Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heart Rhythm ; 19(10): 1595-1603, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35835363

RESUMEN

BACKGROUND: Sodium channel blocker (SCB) infusion is used to unmask the electrocardiographic pattern of Brugada syndrome. The test may also induce premature ventricular complexes (PVCs) in individuals without Brugada pattern, the clinical relevance of which is little known. OBJECTIVE: The purpose of this study was to describe the prevalence of short-coupled (Sc) PVCs induced by ajmaline or flecainide in patients with suspected or documented severe ventricular arrhythmias. METHODS: We reviewed the SCB tests performed in 335 patients with suspected ventricular arrhythmias and structurally normal hearts in 9 centers. ScPVCs were defined as frequent and repetitive PVCs with an R-on-T pattern on SCB tests. Repeated SCB tests were performed in 7 patients and electrophysiological mapping of ScPVCs in 9. RESULTS: Sixteen patients (8 men; mean age 36 ± 11 years) showed ScPVCs and were included. ScPVCs appeared 229 ± 118 seconds after the initiation of infusion and displayed coupling intervals of 288 ± 28 ms. ScPVC patterns were monomorphic in 12 patients, originating from the Purkinje system in mapped patients. Repetitive PVCs were induced in 15 patients (94%) including polymorphic ventricular tachycardias in 9 (56%). SCB infusion was repeated 45 (interquartile range 0.6-46) months later and induced identical ScPVC in all. SCB test was the only mean to reveal the malignant arrhythmia in 6 patients. Catheter ablation was performed in 9 patients, resulting in arrhythmia elimination in 8 with a follow-up of 6 (interquartile range 2-9) years. CONCLUSION: SCB can induce ScPVC, mostly from Purkinje tissue, in a small subset of patients with idiopathic ventricular arrhythmias. Its high reproducibility suggests a distinct individual mechanism.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Complejos Prematuros Ventriculares , Adulto , Ajmalina , Electrocardiografía/métodos , Flecainida , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Bloqueadores de los Canales de Sodio/efectos adversos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/etiología
2.
Eur Heart J ; 43(12): 1234-1247, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35134898

RESUMEN

AIMS: Mapping data of human ventricular fibrillation (VF) are limited. We performed detailed mapping of the activities underlying the onset of VF and targeted ablation in patients with structural cardiac abnormalities. METHODS AND RESULTS: We evaluated 54 patients (50 ± 16 years) with VF in the setting of ischaemic (n = 15), hypertrophic (n = 8) or dilated cardiomyopathy (n = 12), or Brugada syndrome (n = 19). Ventricular fibrillation was mapped using body-surface mapping to identify driver (reentrant and focal) areas and invasive Purkinje mapping. Purkinje drivers were defined as Purkinje activities faster than the local ventricular rate. Structural substrate was delineated by electrogram criteria and by imaging. Catheter ablation was performed in 41 patients with recurrent VF. Sixty-one episodes of spontaneous (n = 10) or induced (n = 51) VF were mapped. Ventricular fibrillation was organized for the initial 5.0 ± 3.4 s, exhibiting large wavefronts with similar cycle lengths (CLs) across both ventricles (197 ± 23 vs. 196 ± 22 ms, P = 0.9). Most drivers (81%) originated from areas associated with the structural substrate. The Purkinje system was implicated as a trigger or driver in 43% of patients with cardiomyopathy. The transition to disorganized VF was associated with the acceleration of initial reentrant activities (CL shortening from 187 ± 17 to 175 ± 20 ms, P < 0.001), then spatial dissemination of drivers. Purkinje and substrate ablation resulted in the reduction of VF recurrences from a pre-procedural median of seven episodes [interquartile range (IQR) 4-16] to 0 episode (IQR 0-2) (P < 0.001) at 56 ± 30 months. CONCLUSIONS: The onset of human VF is sustained by activities originating from Purkinje and structural substrate, before spreading throughout the ventricles to establish disorganized VF. Targeted ablation results in effective reduction of VF burden. KEY QUESTION: The initial phase of human ventricular fibrillation (VF) is critical as it involves the primary activities leading to sustained VF and arrhythmic sudden death. The origin of such activities is unknown. KEY FINDING: Body-surface mapping shows that most drivers (≈80%) during the initial VF phase originate from electrophysiologically defined structural substrates. Repetitive Purkinje activities can be elicited by programmed stimulation and are implicated as drivers in 37% of cardiomyopathy patients. TAKE-HOME MESSAGE: The onset of human VF is mostly associated with activities from the Purkinje network and structural substrate, before spreading throughout the ventricles to establish sustained VF. Targeted ablation reduces or eliminates VF recurrence.


Asunto(s)
Síndrome de Brugada , Ablación por Catéter , Mapeo del Potencial de Superficie Corporal , Ablación por Catéter/métodos , Electrocardiografía , Ventrículos Cardíacos , Humanos , Fibrilación Ventricular
3.
JACC Clin Electrophysiol ; 6(6): 591-608, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32553208

RESUMEN

Idiopathic ventricular fibrillation is diagnosed in patients who survived a ventricular fibrillation episode without any identifiable structural or electrical cause after extensive investigations. It is a common cause of sudden death in young adults. The study reviews the diagnostic value of systematic investigations and the new insights provided by detailed electrophysiological mapping. Recent studies have shown the high incidence of microstructural cardiomyopathic areas, which act as the substrate of ventricular fibrillation re-entries. These subclinical alterations require high-density endo- and epicardial mapping to be identified using electrogram criteria. Small areas are involved and located individually in various sites (mostly epicardial). Their characteristics suggest a variety of genetic or acquired pathological processes affecting cellular connectivity or tissue structure, such as cardiomyopathies, myocarditis, or fatty infiltration. Purkinje abnormalities manifesting as triggering ectopy or providing a substrate for re-entry represent a second important cause. The documentation of ephemeral Purkinje ectopy requires continuous electrocardiography monitoring for diagnosis. A variety of diseases affecting Purkinje cell function or conduction are potentially at play in their pathogenesis. Comprehensive investigations can therefore allow the great majority of idiopathic ventricular fibrillation to ultimately receive diagnoses of a cardiac disease, likely underlain by a mosaic of pathologies. Precise phenotypic characterization has significant implications for interpretation of genetic variants, the risk assessment, and individual therapy. Future improvements in imaging or electrophysiological methods may hopefully allow the identification of the subjects at risk and the development of primary prevention strategies.


Asunto(s)
Mapeo Epicárdico , Fibrilación Ventricular , Arritmias Cardíacas , Electrocardiografía , Humanos
4.
Card Electrophysiol Clin ; 11(4): 699-709, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31706476

RESUMEN

Idiopathic ventricular fibrillation and J-wave syndromes are causes of sudden cardiac death (SCD) without any identified structural cardiac disease after extensive investigations. Recent data show that high-density electrophysiological mapping may ultimately offer diagnoses of subclinical diseases in most patients including those termed "unexplained" SCD. Three major conditions can underlie the occurrence of SCD: (1) localized depolarization abnormalities (due to microstructural myocardial alteration), (2) Purkinje abnormalities manifesting as triggering ectopy and inducible reentry; or (3) repolarization heterogeneities. Each condition may result from a spectrum of pathophysiologic processes with implications for individual therapy.


Asunto(s)
Síndrome de Brugada , Técnicas Electrofisiológicas Cardíacas , Fibrilación Ventricular , Síndrome de Brugada/complicaciones , Síndrome de Brugada/diagnóstico por imagen , Síndrome de Brugada/fisiopatología , Muerte Súbita Cardíaca/etiología , Electrocardiografía , Sistema de Conducción Cardíaco/diagnóstico por imagen , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Fibrilación Ventricular/complicaciones , Fibrilación Ventricular/diagnóstico por imagen , Fibrilación Ventricular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA