Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400913, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563862

RESUMEN

A novel method for synthesizing cationic styryl dyes through a nucleic acid-templated reaction has been developed. This approach overcomes issues associated with traditional synthesis methods, such as harsh conditions, low throughput, and wasteful chemicals. The presence of a nucleic acid template accelerated the styryl dye formation from quaternized heteroaromatic and cationic aldehyde substrates. These styryl dyes show remarkable optical properties change when bound to nucleic acids, hence the success of the synthesis could be readily monitored in situ by UV-Vis and fluorescence spectroscopy and the optical properties data were also observable at the same time. This method provides the desired products from a broad range of coupling partners. By employing different substrates and templates, it is possible to identify new dyes that can bind to a specific type of nucleic acid such as a G-quadruplex. The templated dye synthesis is also successfully demonstrated in live HeLa cells. This approach is a powerful tool for the rapid synthesis and screening of dyes specific for diverse types of nucleic acids or cellular organelles, facilitating new biological discoveries.

2.
Chem Asian J ; 19(6): e202301081, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377056

RESUMEN

A series of novel styryl dye derivatives incorporating indolium and quinolinium core structures were successfully synthesized to explore their interacting and binding capabilities with tau aggregates in vitro and in cells. The synthesized dyes exhibited enhanced fluorescence emission in viscous environments due to the rotatable bond confinement in the core structure. Dye 4, containing a quinolinium moeity and featuring two cationic sites, demonstrated a 28-fold increase in fluorescence emission upon binding to tau aggregates. This dye could also stain tau aggregates in living cells, confirmed by cell imaging using confocal fluorescence microscopy. A molecular docking study was conducted to provide additional visualization and support for binding interactions. This work offers novel and non-cytotoxic fluorescent probes with desirable photophysical properties, which could potentially be used for studying tau aggregates in living cells, prompting further development of new fluorescent probes for early Alzheimer's disease detection.


Asunto(s)
Colorantes Fluorescentes , Colorantes Fluorescentes/química , Simulación del Acoplamiento Molecular , Microscopía Fluorescente
3.
Foods ; 12(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37959151

RESUMEN

Crickets are known to be a promising alternative protein source. However, a negative consumer bias and an off-flavor have become obstacles to the use of these insects in the food industry. In this study, we extracted the protein from commercial cricket powder by employing alkaline extraction-acid precipitation and including ammonium sulfate. The physicochemical and functional properties of the proteins were determined. It was found that, upon including 60% ammonium sulfate, the cricket protein isolate (CPI) had the highest protein content (~94%, w/w). The circular dichroism results indicated that a higher amount of ammonium sulfate drastically changed the secondary structure of the CPI by decreasing its α-helix content and enhancing its surface hydrophobicity. The lowest solubility of CPI was observed at pH 5. The CPI also showed better foaming properties and oil-holding capacity (OHC) compared with the cricket powder. In conclusion, adding ammonium sulfate affected the physicochemical and functional properties of the CPI, allowing it to be used as an alternative protein in protein-enriched foods and beverages.

4.
Analyst ; 148(19): 4677-4687, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37697928

RESUMEN

Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of analytes. However, the performance of SERS substrates depends on many variables including the enhancement factor, morphology, consistency, and interaction with target analytes. In this study, we investigated, for the first time, the use of electrospray deposition (ESD) combined with a novel ambient focusing DC ion funnel to deposit a high density of gold nanoparticles (AuNPs) to generate large-area, uniform substrates for highly sensitive SERS analysis. We found that the combination of ambient ion focusing with ESD facilitated high-density and intact deposition of non-spherical NPs. This also allowed us to take advantage of a polydisperse colloidal solution of AuNPs (consisting of nanospheres and nanorods), as confirmed by finite-difference time domain (FDTD) simulations. Our SERS substrate exhibited excellent capture capacity for model analyte molecules, namely 4-aminothiophenol (4-ATP) and Rhodamine 6G (R6G), with detection limits in the region of 10-11 M and a relative standard deviation of <6% over a large area (∼500 × 500 µm2). Additionally, we assessed the quantitative performance of our SERS substrate using the R6G probe molecule. The results demonstrated excellent linearity (R2 > 0.99) over a wide concentration range (10-4 M to 10-10 M) with a detection limit of 80 pM.

5.
Sci Rep ; 13(1): 12482, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528159

RESUMEN

Numerous novel methods to detect foodborne pathogens have been extensively developed to ensure food safety. Among the important foodborne bacteria, Bacillus cereus was identified as a pathogen of concern that causes various food illnesses, leading to interest in developing effective detection methods for this pathogen. Although a standard method based on culturing and biochemical confirmative test is available, it is time- and labor-intensive. Alternative PCR-based methods have been developed but lack high-throughput capacity and ease of use. This study, therefore, attempts to develop a robust method for B. cereus detection by leveraging the highly specific pyrrolidinyl peptide nucleic acids (PNAs) as probes for a bead array method with multiplex and high-throughput capacity. In this study, PNAs bearing prolyl-2-aminocyclopentanecarboxylic acid (ACPC) backbone with groEL, motB, and 16S rRNA sequences were covalently coupled with three sets of fluorescently barcoded beads to detect the three B. cereus genes. The developed acpcPNA-based bead array exhibited good selectivity where only signals were detectable in the presence of B. cereus, but not for other species. The sensitivity of this acpcPNA-based bead assay in detecting genomic DNA was found to be 0.038, 0.183 and 0.179 ng for groEL, motB and 16S rRNA, respectively. This performance was clearly superior to its DNA counterpart, hence confirming much stronger binding strength of acpcPNA over DNA. The robustness of the developed method was further demonstrated by testing artificially spiked milk and pickled mustard greens with minimal interference from food metrices. Hence, this proof-of-concept acpcPNA-based bead array method has been proven to serve as an effective alternative nucleic acid-based method for foodborne pathogens.


Asunto(s)
Bacillus cereus , Ácidos Nucleicos de Péptidos , Bacillus cereus/genética , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa/métodos , ADN , Microbiología de Alimentos
6.
Anal Chem ; 95(34): 12794-12801, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590190

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a significant health issue globally. Point-of-care (POC) testing that can offer a rapid and accurate diagnosis of SARS-CoV-2 at the early stage of infection is highly desirable to constrain this outbreak, especially in resource-limited settings. Herein, we present a G-quadruplex DNAzyme-based electrochemical assay that is integrated with a sequential flow controllable microfluidic device for the detection of SARS-CoV-2 cDNA. According to the detection principle, a pyrrolidinyl peptide nucleic acid probe is immobilized on a screen-printed graphene electrode for capturing SARS-CoV-2 DNA. The captured DNA subsequently hybridizes with another DNA probe that carries a G-quadruplex DNAzyme as the signaling unit. The G-quadruplex DNAzyme catalyzes the H2O2-mediated oxidation of hydroquinone to benzoquinone that can be detected using square-wave voltammetry to give a signal that corresponds to the target DNA concentration. The assay exhibited high selectivity for SARS-CoV-2 DNA and showed a good experimental detection limit at 30 pM. To enable automation, the DNAzyme-based assay was combined with a capillary-driven microfluidic device featuring a burst valve technology to allow sequential sample and reagent delivery as well as the DNA target hybridization and enzymatic reaction to be operated in a precisely controlled fashion. The developed microfluidic device was successfully applied for the detection of SARS-CoV-2 from nasopharyngeal swab samples. The results were in good agreement with the standard RT-PCR method and could be performed within 20 min. Thus, this platform offers desirable characteristics that make it an alternative POC tool for COVID-19 diagnosis.


Asunto(s)
COVID-19 , ADN Catalítico , Ácidos Nucleicos de Péptidos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Peróxido de Hidrógeno
7.
Mikrochim Acta ; 190(6): 215, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171648

RESUMEN

The detection of biogenic amines released from degraded meats is an effective method for evaluating meat freshness. However, existing traditional methods like titration are deemed tedious, while the use of sophisticated analytical instruments is not amenable to field testing. Herein, a cyanostilbene-based fluorescent array was rapidly fabricated using macroarray synthesis on a cellulose paper surface to detect amines liberated from spoiled beef, fish, and chicken. The fluorescence changes of immobilized molecules from the interaction with gaseous amines were used to monitor changes in freshness levels. Thanks to the high-throughput nature of macroarray synthesis, a set of highly responsive molecules such as pyridinium and dicyanovinyl moieties were quickly revealed. Importantly, this method offers flexibility in sensing applications including (1) sensing by individual sensor molecules, where the fluorescence response correlated well with established titration methods, and (2) collective sensing whereby chemometric analysis was used to provide a cutoff of freshness with 73-100% accuracy depending on meat types. Overall, this study paves the way for a robust and cost-effective tool for monitoring meat freshness.


Asunto(s)
Aminas Biogénicas , Carne , Animales , Bovinos , Carne/análisis , Aminas Biogénicas/análisis , Colorantes , Peces , Pollos
8.
Anal Chim Acta ; 1265: 341257, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37230584

RESUMEN

Electrochemical DNA sensors can be operated in either static or flow-based detection schemes. In static schemes, manual washing steps are still necessary, resulting in a tedious and time-consuming process. In contrast, in flow-based electrochemical sensors, the current response is collected when the solution flows through the electrode continuously. However, the drawback of such a flow system is the low sensitivity due to the limited time for the interaction between the capturing element and the target. Herein, we propose a novel electrochemical capillary-driven microfluidic DNA sensor to combine the advantages of static and flow-based electrochemical detection systems into a single device by incorporating burst valve technology. The microfluidic device with a two-electrode configuration was applied for the simultaneous detection of two different DNA markers, human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) cDNA, via the specific interaction between pyrrolidinyl peptide nucleic acids (PNA) probes and the DNA target. The integrated system, while requiring a small sample volume (7 µL for each sample loading port) and less analysis time, achieved good performance in terms of the limits of detection (LOD) (3SDblank/slope) and quantification (LOQ) (10SDblank/slope) at 1.45 nM and 4.79 nM for HIV and 1.20 nM and 3.96 nM for HCV, respectively. The simultaneous detection of HIV-1 and HCV cDNA prepared from human blood samples showed results that are in complete agreement with the RT‒PCR assay. The results qualify this platform as a promising alternative for the analysis of either HIV-1/HCV or coinfection that can be easily adapted for other clinically important nucleic acid-based markers.


Asunto(s)
Coinfección , Infecciones por VIH , VIH-1 , Hepatitis C , Humanos , Hepacivirus/genética , Microfluídica , VIH-1/genética , ADN Complementario , ADN , Hepatitis C/diagnóstico , Infecciones por VIH/diagnóstico
9.
Talanta ; 253: 123992, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228554

RESUMEN

The COVID-19 pandemic has significantly increased the development of the development of point-of-care (POC) diagnostic tools because they can serve as useful tools for detecting and controlling spread of the disease. Most current methods require sophisticated laboratory instruments and specialists to provide reliable, cost-effective, specific, and sensitive POC testing for COVID-19 diagnosis. Here, a smartphone-assisted Sensit Smart potentiostat (PalmSens) was integrated with a paper-based electrochemical sensor to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A disposable paper-based device was fabricated, and the working electrode directly modified with a pyrrolidinyl peptide nucleic acid (acpcPNA) as the biological recognition element to capture the target complementary DNA (cDNA). In the presence of the target cDNA, hybridization with acpcPNA probe blocks the redox conversion of a redox reporter, leading to a decrease in electrochemical response correlating to SARS-CoV-2 concentration. Under optimal conditions, a linear range from 0.1 to 200 nM and a detection limit of 1.0 pM were obtained. The PNA-based electrochemical paper-based analytical device (PNA-based ePAD) offers high specificity toward SARS-CoV-2 N gene because of the highly selective PNA-DNA binding. The developed sensor was used for amplification-free SARS-CoV-2 detection in 10 nasopharyngeal swab samples (7 SARS-CoV-2 positive and 3 SARS-CoV-2 negative), giving a 100% agreement result with RT-PCR.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , Pandemias , ADN
10.
Sci Rep ; 12(1): 14250, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995925

RESUMEN

Nucleic acid staining dyes are important tools for the analysis and visualizing of DNA/RNA in vitro and in the cells. Nevertheless, the range of commercially accessible dyes is still rather limited, and they are often very costly. As a result, finding nontoxic, easily accessible dyes, with desirable optical characteristics remains important. Styryl dyes have recently gained popularity as potential biological staining agents with many appealing properties, including a straightforward synthesis procedure, excellent photostability, tunable fluorescence, and high fluorescence quantum yield in the presence of nucleic acid targets with low background fluorescence signals. In addition to fluorescence, styryl dyes are strongly colored and exhibit solvatochromic properties which make them useful as colorimetric stains for low-cost and rapid testing of nucleic acids. In this work, novel dicationic styryl dyes bearing quaternary ammonium groups are designed to improve binding strength and optical response with target nucleic acids which contain a negatively charged phosphate backbone. Optical properties of the newly synthesized styryl dyes have been studied in the presence and absence of nucleic acid targets with the aim to find new dyes that can sensitively and specifically change fluorescence and/or color in the presence of nucleic acid targets. The binding interaction and optical response of the dicationic styryl dyes with nucleic acid were superior to the corresponding monocationic styryl dyes. Applications of the developed dyes for colorimetric detection of DNA in vitro and imaging of cellular nucleic acids are also demonstrated.


Asunto(s)
Ácidos Nucleicos , Colorimetría , ADN/química , Colorantes Fluorescentes/química , Ácidos Nucleicos/química , Espectrometría de Fluorescencia
11.
RSC Chem Biol ; 3(6): 648-697, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35755191

RESUMEN

Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.

12.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684452

RESUMEN

In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds' binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.


Asunto(s)
Antimaláricos , Difosfotransferasas , Plasmodium falciparum , Antimaláricos/química , Difosfotransferasas/antagonistas & inhibidores , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Simulación del Acoplamiento Molecular , Plasmodium falciparum/efectos de los fármacos
13.
ACS Appl Bio Mater ; 5(2): 789-800, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119822

RESUMEN

Single-stranded peptide nucleic acid (PNA) probes interact strongly with several nanomaterials, and the interaction was diminished in the presence of complementary nucleic acid targets which forms the basis of many nucleic acid sensing platforms. As opposed to the negatively charged DNA probes, the charges on the PNA probes may be fine-tuned by incorporating amino acids with charged side chains. The contribution of electrostatic effects to the interaction between PNA probes and nanomaterials has been largely overlooked. This work reveals that electrostatic effects substantially enhanced the quenching of dye-labeled conformationally constrained pyrrolidinyl PNA probes by several nanomaterials including graphene oxide (GO), reduced graphene oxide, gold nanoparticles (AuNPs), and silver nanoparticles. The fluorescence quenching and the color change from red to purple in the case of AuNPs because of aggregation were inhibited in the presence of complementary nucleic acid targets. Thus, fluorescence and colorimetric assays for DNA and RNA that can distinguish even single-base-mismatched nucleic acids with improved sensitivity over conventional DNA probes were established. Both the GO- and AuNP-based sensing platforms have been successfully applied for the detection of real DNA and RNA samples in vitro and in living cells. This study emphasizes the active roles of electrostatic effects in the PNA-nanomaterial interactions, which paves the way toward improving the performance of PNA-nanomaterial based assays of nucleic acids.


Asunto(s)
Nanopartículas del Metal , Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , ADN/química , Sondas de ADN , Oro/química , Nanopartículas del Metal/química , Sondas de Ácido Nucleico , Ácidos Nucleicos de Péptidos/química , ARN , Plata/química , Electricidad Estática
14.
J Org Chem ; 87(10): 6525-6540, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35133162

RESUMEN

Aqueous-phase ozonolysis in the atmosphere is an important process during cloud and fog formation. Water in the atmosphere acts as both a reaction medium and a reductant during the ozonolysis. Inspired by the atmospheric aqueous-phase ozonolysis, we herein report the ozonolysis of alkenes in water assisted by surfactants. Several types of surfactants, including anionic, cationic, and nonionic surfactants, were investigated. Although most surfactants enhanced the solubility of alkenes in water, they also generated excessive foaming during the ozone bubbling, which led to the loss of products. Mitigation of the frothing was accomplished by using Coolade as a nonionic and low-foaming surfactant. Coolade-assisted ozonolysis of alkenes in water provided the desired carbonyl products in good yields and comparable to those achieved in organic solvents. During the ozonolysis reaction, water molecules trapped within the polyethylene glycol region of Coolade were proposed to intercept the Criegee intermediate to provide a hydroxy hydroperoxide intermediate. Decomposition of the hydroxy hydroperoxide led to formation of the carbonyl product without the need for a reductant typically required for the conventional ozonolysis using organic solvents. This study presents Coolade as an effective surfactant to improve the solubility of alkenes while mitigating frothing during the ozonolysis in water.


Asunto(s)
Alquenos , Ozono , Aerosoles , Peróxido de Hidrógeno , Sustancias Reductoras , Solventes , Tensoactivos , Agua
15.
Biosens Bioelectron ; 196: 113719, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34706315

RESUMEN

Coinfection of HIV/HCV is a significant public health issue globally, as it increases the risk of liver cancer in co-infected individuals. The point-of-care testing (POCT) device for HIV/HCV DNA detection is promptly needed for diagnosis and monitoring of the disease progression. Here, the alternating-current electroluminescence (ACEL) technique is proposed as a sensitive POCT sensing platform for HIV/HCV cDNA detection. A conductance-based light emission modulated by the hybridization between a pyrrolidinyl PNA probe and the DNA target enabled the DNA detection in a label-free format. Enhanced electroluminescence was observed in the presence of the target DNA due to the increased proton conductivity. Under the optimal conditions, the linearity range from 1 nM to 1 µM was achieved for HIV and HCV cDNA with LODs of 1.86 pM (HIV cDNA) and 1.96 pM (HCV cDNA). The spiked HIV/HCV cDNA in healthy human serum was successfully detected, demonstrating the feasibility of the developed device for the detection of cDNA in real biological samples. Additionally, simultaneous HIV/HCV cDNA detection on a single ACEL device employing a 2x2-array detection zone design. The cross-reactivity with other viral DNA was shown to be minimal due to the high specificity of the PNA probes used. Finally, the negative and positive samples from the patient's serum were tested and the results were in 100% agreement with the commercial kit based-on real-time PCR method, thus illustrating the high sensitivity and specificity of the developed sensor.


Asunto(s)
Técnicas Biosensibles , Coinfección , Infecciones por VIH , Hepatitis C , ADN Viral/genética , VIH/genética , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico , Hepacivirus/genética , Hepatitis C/diagnóstico , Humanos
16.
Anal Chim Acta ; 1186: 339130, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756252

RESUMEN

Prostate cancer associated 3 (PCA3) assay has been used to improve prostate cancer diagnosis and reduce unnecessary biopsies. In this work, we successfully developed a new PCA3 assay on an origami paper-based peptide nucleic acid device (oPAD). The PCA3 oPAD comprises an acrylic cassette and shutter slides to facilitate the molecular reaction and liquid control occurring on the paper surface. To quantify PCA3, a pyrrolidinyl peptide nucleic acid (acpcPNA) was immobilized onto the aldehyde-modified oPAD surface as a selective capture probe. A G-quadruplex (GQD) DNAzyme reporter probe was designed so that the PCA3 gene target binding triggered the hybridization chain reaction of the reporter probe, resulting in the accumulation of the GQD on the oPAD. The peroxidase activity of the GQD-hemin generated a deep green color of the oxidized ABTS substrate. Image analyses were performed in Adobe Photoshop CS6. The proposed oPAD was successfully applied in PCA3 detection ranges of 1-5 µM (r2 = 0.982) with a limit of detection of 0.5 µM. Our proposed oPAD was demonstrated to measure PCA3 samples in both urine matrix and human cancer cell lines. The results reveal the great potential of our origami paper-based platform to be an alternative approach for facile, rapid, and low-cost detection of PCA3 in real samples.


Asunto(s)
ADN Catalítico , Ácidos Nucleicos de Péptidos , Neoplasias de la Próstata , Antígenos de Neoplasias , Detección Precoz del Cáncer , Humanos , Masculino , Hibridación de Ácido Nucleico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética
17.
Anal Bioanal Chem ; 413(26): 6661-6669, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34476520

RESUMEN

Bacillus cereus is one of the most common foodborne pathogens found in various kinds of staple foods such as rice and wheat. A rapid and accurate detection method for this pathogen is highly desirable for the sustainable production of relevant food products. While several classical and molecular-based detection methods are available for the identification of B. cereus, they suffered one or more limitations such as the requirement for a tedious and time-consuming process, less than ideal specificity, and the lack of portability. Herein, we developed the first paper-based sensing device that exhibits high species specificity with sufficiently low limit of detection for the visual detection of specific DNA sequences of B. cereus. The success is attributed to the strategic planning of fabrication in various dimensions including thorough bioinformatics search for highly specific genes, the use of the pyrrolidinyl peptide nucleic acid (PNA) probe whose selectivity advantage is well documented, and an effective PNA immobilization and DNA-binding visualization method with an internal cross-checking system for validating the results. Testing in rice matrices indicates that the sensor is capable of detecting and distinguishing B. cereus from other bacterial species. Hence, this paper-based sensor has potential to be adopted as a practical means to detect B. cereus in food industries.


Asunto(s)
Bacillus cereus/aislamiento & purificación , Técnicas Biosensibles/métodos , Microbiología de Alimentos , Ácidos Nucleicos de Péptidos/química , Pirrolidinas/química , Oryza/microbiología , Papel
18.
Sci Rep ; 11(1): 13301, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172759

RESUMEN

The popularity and high price of durian make quality control in terms of ripeness very important, which in turn depends heavily on harvesting at an appropriate maturity stage. To date, reports on data-driven methods for maturity prediction are scarce, with many rather focusing on ripeness prediction. Herein, we report the first disclosure of key molecular markers in the liquid extract of durian peduncle that can be a predictive tool for maturity. Multiple chromatographic and spectroscopic techniques including TLC, HPLC, PS-MS, LC-MS/MS, and NMR, were used to characterize chemical profiles of the aqueous extracts from peduncles at different ages. Four compounds that show positive correlations with maturity were identified as sucrose, asparagine, arginine, and pipecolic acid, with asparagine as the most abundant species. This finding paves the way for more research of high impact such as the relationship between biochemical reactions in peduncle and pulp, and the development of accurate and non-destructive sensors for maturity prediction.

19.
Biopolymers ; 112(11): e23459, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34101824

RESUMEN

The conformationally constrained pyrrolidinyl PNA with a dipeptide consisting of an alternating nucleobase-modified D-proline and a cyclic ß-amino acid "spacer" exhibited improved nucleic acid binding properties compared to the original PNA. The pyrrolidinyl PNA with the four-membered ring spacer (1S,2S)-2-aminocyclobutanecarboxylic acid (acbcPNA) are among the best performed members of the pyrrolidinyl PNA family. However, these PNA suffer some limitations such as aqueous solubility and non-specific interactions due to their extreme hydrophobicity. In the present work, a hydroxy group is introduced onto the cyclobutane ring spacer of the acbcPNA with the aim of decreasing its hydrophobicity. To this end, a Fmoc/tBu ether-protected 4-hydroxy-2-aminocyclobutanecarboxylic acid building block was synthesized and resolved by chiral HPLC. Each enantiomer was used to synthesize the hydroxy-modified acbcPNA employing Fmoc solid-phase peptide synthesis. DNA/RNA binding studies indicated that the introduction of the hydroxy group to the acbcPNA decreases the binding affinity toward complementary DNA and RNA while maintaining the sequence and directional specificity of unmodified acbcPNA. The hydrophobicity of the hydroxy-modified acbcPNA decreased with the number of hydroxy groups added as indicated by the decrease in the logP values. Only two modifications were sufficient to decrease the logP by an order of magnitude without excessively lowering the binding affinity nor the specificity. This work thus demonstrated that the specific structural modifications for this type of PNA model can be performed in a modular fashion, which paves the way toward the future realization of improving hydrophilicity and nucleic acid binding affinity as well as specificity.


Asunto(s)
Ciclobutanos , Ácidos Nucleicos de Péptidos , ADN Complementario , ARN , Estereoisomerismo
20.
Biosens Bioelectron ; 189: 113381, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34090155

RESUMEN

A novel fluorescent paper-based DNA sensor employing a highly specific pyrrolidinyl peptide nucleic acid (acpcPNA) probe was developed for the sensitive and selective detection of hepatitis C virus (HCV). The acpcPNA was covalently immobilized onto partially oxidized cellulose paper via reductive alkylation between the amine and the aldehyde groups. The fluorescence-based detection was performed by monitoring the fluorescence signal response of a fluorescent dye that selectively binds to the single-strand region of the DNA target over the PNA probe employing a custom-made portable fluorescent camera gadget in combination with a smartphone camera. Under the optimal conditions, a linear relationship between the fluorescence change in the green channel and the amount of HCV DNA from 5 to 100 pmol with a correlation coefficient of 0.9956, and the limit of detection of 5 pmol were obtained for short synthetic oligonucleotides. The acpcPNA probe exhibited very high selectivity for the complementary oligonucleotides over the single-base-mismatched, two-base-mismatched, and non-complementary DNA targets. Benefitting from the signal amplification achieved through the numerous binding sites for the dye provided by the overhanging tail of long ssDNA target sequences, this system was successfully applied to detect the HCV complementary DNA (cDNA) obtained from clinical samples with satisfactory results. The proposed fluorescent paper-based sensor demonstrated a great potential to be used as a low-cost, simple, label-free, sensitive, and selective DNA sensor for point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Hepatitis C , Ácidos Nucleicos de Péptidos , ADN , Hepacivirus/genética , Hepatitis C/diagnóstico , Humanos , Hibridación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA