Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 383(6690): 1484-1492, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547260

RESUMEN

Cellular purines, particularly adenosine 5'-triphosphate (ATP), fuel many metabolic reactions, but less is known about the direct effects of pyrimidines on cellular metabolism. We found that pyrimidines, but not purines, maintain pyruvate oxidation and the tricarboxylic citric acid (TCA) cycle by regulating pyruvate dehydrogenase (PDH) activity. PDH activity requires sufficient substrates and cofactors, including thiamine pyrophosphate (TPP). Depletion of cellular pyrimidines decreased TPP synthesis, a reaction carried out by TPP kinase 1 (TPK1), which reportedly uses ATP to phosphorylate thiamine (vitamin B1). We found that uridine 5'-triphosphate (UTP) acts as the preferred substrate for TPK1, enabling cellular TPP synthesis, PDH activity, TCA-cycle activity, lipogenesis, and adipocyte differentiation. Thus, UTP is required for vitamin B1 utilization to maintain pyruvate oxidation and lipogenesis.


Asunto(s)
Ciclo del Ácido Cítrico , Lipogénesis , Pirimidinas , Complejo Piruvato Deshidrogenasa , Piruvatos , Adenosina Trifosfato/metabolismo , Pirimidinas/metabolismo , Piruvatos/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo , Uridina Trifosfato/metabolismo , Oxidación-Reducción , Proteínas Quinasas/metabolismo , Humanos , Células HeLa , Complejo Piruvato Deshidrogenasa/metabolismo
2.
Nat Commun ; 13(1): 2698, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577785

RESUMEN

Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.


Asunto(s)
Nucleótidos de Purina , Serina , Carbono , Movimiento Celular , Purinas , Serina/metabolismo
3.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756106

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
4.
FEBS J ; 288(11): 3547-3569, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33340237

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury is a frequent perioperative threat, with numerous strategies developed to limit and/or prevent it. One interesting axis of research is the anesthetic preconditioning (APc) agent's hypothesis (such as sevoflurane, SEV). However, APc's mode of action is still poorly understood and volatile anesthetics used as preconditioning agents are often not well suited in clinical practice. Here, in vitro using H9C2 cells lines (in myeloblast state or differentiated toward cardiomyocytes) and in vivo in mice, we identified that SEV-induced APc is mediated by a mild induction of reactive oxygen species (ROS) that activates Akt and induces the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL), therefore protecting cardiomyocytes from I/R-induced death. Furthermore, we extended these results to human cardiomyocytes (derived from induced pluripotent stem - IPS - cells). Importantly, we demonstrated that this protective signaling pathway induced by SEV could be stimulated using the antidiabetic agent metformin (MET), suggesting the preconditioning properties of MET. Altogether, our study identified a signaling pathway allowing APc of cardiac injuries as well as a rational for the use of MET as a pharmacological preconditioning agent to prevent I/R injuries.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Proteína bcl-X/genética , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Sevoflurano/farmacología , Transducción de Señal/efectos de los fármacos
5.
Cell Death Dis ; 11(12): 1041, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33288741

RESUMEN

Escape from cell death is a key event in cancer establishment/progression. While apoptosis is often considered as the main cell death pathway, upon caspase inhibition, cell death is rather delayed than blocked leading to caspase-independent cell death (CICD). Although described for years, CICD's underlying mechanism remains to be identified. Here, we performed a genome-wide siRNA lethality screening and identified the RING-Type E3 Ubiquitin Transferase (UBR2) as a specific regulator of CICD. Strikingly, UBR2 downregulation sensitized cells towards CICD while its overexpression was protective. We established that UBR2-dependent protection from CICD was mediated by the MAPK/Erk pathway. We then observed that UBR2 is overexpressed in several cancers, especially in breast cancers and contributes to CICD resistance. Therefore, our work defines UBR2 as a novel regulator of CICD, found overexpressed in cancer cells, suggesting that its targeting may represent an innovative way to kill tumor cells.


Asunto(s)
Caspasas/deficiencia , Sistema de Señalización de MAP Quinasas , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis , Autofagia , Caspasas/metabolismo , Muerte Celular , Línea Celular Tumoral , Citoprotección , Ferroptosis , Técnicas de Silenciamiento del Gen , Genoma Humano , Humanos , Modelos Biológicos , Necroptosis
6.
Mol Cell ; 78(6): 1178-1191.e6, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32485148

RESUMEN

The RAS-ERK/MAPK (RAS-extracellular signal-regulated kinase/mitogen-activated protein kinase) pathway integrates growth-promoting signals to stimulate cell growth and proliferation, at least in part, through alterations in metabolic gene expression. However, examples of direct and rapid regulation of the metabolic pathways by the RAS-ERK pathway remain elusive. We find that physiological and oncogenic ERK signaling activation leads to acute metabolic flux stimulation through the de novo purine synthesis pathway, thereby increasing building block availability for RNA and DNA synthesis, which is required for cell growth and proliferation. We demonstrate that ERK2, but not ERK1, phosphorylates the purine synthesis enzyme PFAS (phosphoribosylformylglycinamidine synthase) at T619 in cells to stimulate de novo purine synthesis. The expression of nonphosphorylatable PFAS (T619A) decreases purine synthesis, RAS-dependent cancer cell-colony formation, and tumor growth. Thus, ERK2-mediated PFAS phosphorylation facilitates the increase in nucleic acid synthesis required for anabolic cell growth and proliferation.


Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Purinas/biosíntesis , Células A549 , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación , Purinas/metabolismo , Transducción de Señal/fisiología , Proteínas ras/metabolismo
7.
Nat Cancer ; 1(9): 862-863, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-35121954
8.
Cancer Cell ; 36(3): 268-287.e10, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31447347

RESUMEN

GAPDH is emerging as a key player in T cell development and function. To investigate the role of GAPDH in T cells, we generated a transgenic mouse model overexpressing GAPDH in the T cell lineage. Aged mice developed a peripheral Tfh-like lymphoma that recapitulated key molecular, pathological, and immunophenotypic features of human angioimmunoblastic T cell lymphoma (AITL). GAPDH induced non-canonical NF-κB pathway activation in mouse T cells, which was strongly activated in human AITL. We developed a NIK inhibitor to reveal that targeting the NF-κB pathway prolonged AITL-bearing mouse survival alone and in combination with anti-PD-1. These findings suggest the therapeutic potential of targeting NF-κB signaling in AITL and provide a model for future AITL therapeutic investigations.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Linfadenopatía Inmunoblástica/patología , Linfoma de Células T/patología , FN-kappa B/metabolismo , Linfocitos T/inmunología , Anciano , Animales , Línea Celular Tumoral , Linaje de la Célula/inmunología , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Células HEK293 , Humanos , Linfadenopatía Inmunoblástica/genética , Linfoma de Células T/tratamiento farmacológico , Linfoma de Células T/genética , Linfoma de Células T/inmunología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , FN-kappa B/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Quinasa de Factor Nuclear kappa B
9.
Cancers (Basel) ; 11(5)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108873

RESUMEN

Cancer cells exhibit a dynamic metabolic landscape and require a sufficient supply of nucleotides and other macromolecules to grow and proliferate. To meet the metabolic requirements for cell growth, cancer cells must stimulate de novo nucleotide synthesis to obtain adequate nucleotide pools to support nucleic acid and protein synthesis along with energy preservation, signaling activity, glycosylation mechanisms, and cytoskeletal function. Both oncogenes and tumor suppressors have recently been identified as key molecular determinants for de novo nucleotide synthesis that contribute to the maintenance of homeostasis and the proliferation of cancer cells. Inactivation of tumor suppressors such as TP53 and LKB1 and hyperactivation of the mTOR pathway and of oncogenes such as MYC, RAS, and AKT have been shown to fuel nucleotide synthesis in tumor cells. The molecular mechanisms by which these signaling hubs influence metabolism, especially the metabolic pathways for nucleotide synthesis, continue to emerge. Here, we focus on the current understanding of the molecular mechanisms by which oncogenes and tumor suppressors modulate nucleotide synthesis in cancer cells and, based on these insights, discuss potential strategies to target cancer cell proliferation.

10.
Cell Metab ; 29(6): 1243-1257.e10, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30827861

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease treated with anti-CD20-based immuno-chemotherapy (R-CHOP). We identified that low levels of GAPDH predict a poor response to R-CHOP treatment. Importantly, we demonstrated that GAPDHlow lymphomas use OxPhos metabolism and rely on mTORC1 signaling and glutaminolysis. Consistently, disruptors of OxPhos metabolism (phenformin) or glutaminolysis (L-asparaginase) induce cytotoxic responses in GAPDHlow B cells and improve GAPDHlow B cell-lymphoma-bearing mice survival, while they are low or not efficient on GAPDHhigh B cell lymphomas. Ultimately, we selected four GAPDHlow DLBCL patients, who were refractory to all anti-CD20-based therapies, and targeted DLBCL metabolism using L-asparaginase (K), mTOR inhibitor (T), and metformin (M) (called KTM therapy). Three out of the four patients presented a complete response upon one cycle of KTM. These findings establish that the GAPDH expression level predicts DLBCL patients' response to R-CHOP treatment and their sensitivity to specific metabolic inhibitors.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Células Cultivadas , Estudios de Cohortes , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células HEK293 , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Prednisona/uso terapéutico , Pronóstico , Estudios Retrospectivos , Rituximab/uso terapéutico , Resultado del Tratamiento , Vincristina/uso terapéutico , Adulto Joven
11.
Trends Cell Biol ; 28(11): 882-895, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30115557

RESUMEN

Mitochondria are essential highly dynamic organelles that provide the necessary energy for a variety of different processes, such as survival, proliferation, and migration. In order to maintain an intact mitochondrial network, cells have developed quality control systems that allow the removal of damaged or superfluous mitochondria by selective mitochondrial autophagy called mitophagy. Although the parkin/PINK1 axis is often considered the main regulator of mitophagy, a growing body of evidence has shown that this pathway is not unique and that mitophagy can still be functional in the absence of parkin. Here, we will review recent literature describing parkin-independent mitophagy and its role in various physiopathological conditions, therefore representing potential new targets to treat diseases affected by dysregulated mitophagy.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo
12.
Neurobiol Dis ; 119: 159-171, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30092269

RESUMEN

Following the involvement of CHCHD10 in FrontoTemporal-Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS) clinical spectrum, a founder mutation (p.Gly66Val) in the same gene was identified in Finnish families with late-onset spinal motor neuronopathy (SMAJ). SMAJ is a slowly progressive form of spinal muscular atrophy with a life expectancy within normal range. In order to understand why the p.Ser59Leu mutation, responsible for severe FTD-ALS, and the p.Gly66Val mutation could lead to different levels of severity, we compared their effects in patient cells. Unlike affected individuals bearing the p.Ser59Leu mutation, patients presenting with SMAJ phenotype have neither mitochondrial myopathy nor mtDNA instability. The expression of CHCHD10S59L mutant allele leads to disassembly of mitochondrial contact site and cristae organizing system (MICOS) with mitochondrial dysfunction and loss of cristae in patient fibroblasts. We also show that G66V fibroblasts do not display the loss of MICOS complex integrity and mitochondrial damage found in S59L cells. However, S59L and G66V fibroblasts show comparable accumulation of phosphorylated mitochondrial TDP-43 suggesting that the severity of phenotype and mitochondrial damage do not depend on mitochondrial TDP-43 localization. The expression of the CHCHD10G66V allele is responsible for mitochondrial network fragmentation and decreased sensitivity towards apoptotic stimuli, but with a less severe effect than that found in cells expressing the CHCHD10S59L allele. Taken together, our data show that cellular phenotypes associated with p.Ser59Leu and p.Gly66Val mutations in CHCHD10 are different; loss of MICOS complex integrity and mitochondrial dysfunction, but not TDP-43 mitochondrial localization, being likely essential to develop a severe motor neuron disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Adulto , Proteínas de Unión al ADN/análisis , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/análisis , Mutación/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Índice de Severidad de la Enfermedad
13.
Cell Metab ; 27(4): 828-842.e7, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29551590

RESUMEN

Dietary restriction (DR) was shown to impact on tumor growth with very variable effects depending on the cancer type. However, how DR limits cancer progression remains largely unknown. Here, we demonstrate that feeding mice a low-protein (Low PROT) isocaloric diet but not a low-carbohydrate (Low CHO) diet reduced tumor growth in three independent mouse cancer models. Surprisingly, this effect relies on anticancer immunosurveillance, as depleting CD8+ T cells, antigen-presenting cells (APCs), or using immunodeficient mice prevented the beneficial effect of the diet. Mechanistically, we established that a Low PROT diet induces the unfolded protein response (UPR) in tumor cells through the activation of IRE1α and RIG1 signaling, thereby resulting in cytokine production and mounting an efficient anticancer immune response. Collectively, our data suggest that a Low PROT diet induces an IRE1α-dependent UPR in cancer cells, enhancing a CD8-mediated T cell response against tumors.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Dieta con Restricción de Proteínas , Endorribonucleasas/metabolismo , Vigilancia Inmunológica , Neoplasias Experimentales/dietoterapia , Neoplasias Experimentales/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Línea Celular Tumoral , Neoplasias Colorrectales/dietoterapia , Neoplasias Colorrectales/inmunología , Endorribonucleasas/genética , Femenino , Depleción Linfocítica , Linfoma/dietoterapia , Linfoma/inmunología , Melanoma Experimental/dietoterapia , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , ARN Helicasas/metabolismo , Transducción de Señal
14.
Oncogene ; 37(16): 2122-2136, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29391601

RESUMEN

Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.


Asunto(s)
Apoptosis/genética , Proteína 11 Similar a Bcl2/fisiología , Familia-src Quinasas/fisiología , Animales , Proteína 11 Similar a Bcl2/antagonistas & inhibidores , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Resistencia a Antineoplásicos/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Oncogenes/fisiología , Transducción de Señal/genética , Familia-src Quinasas/genética
15.
Cell Rep ; 20(12): 2846-2859, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930681

RESUMEN

Mitophagy is an evolutionarily conserved process that selectively targets impaired mitochondria for degradation. Defects in mitophagy are often associated with diverse pathologies, including cancer. Because the main known regulators of mitophagy are frequently inactivated in cancer cells, the mechanisms that regulate mitophagy in cancer cells are not fully understood. Here, we identified an E3 ubiquitin ligase (ARIH1/HHARI) that triggers mitophagy in cancer cells in a PINK1-dependent manner. We found that ARIH1/HHARI polyubiquitinates damaged mitochondria, leading to their removal via autophagy. Importantly, ARIH1 is widely expressed in cancer cells, notably in breast and lung adenocarcinomas; ARIH1 expression protects against chemotherapy-induced death. These data challenge the view that the main regulators of mitophagy are tumor suppressors, arguing instead that ARIH1-mediated mitophagy promotes therapeutic resistance.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Portadoras/metabolismo , Mitofagia , Neoplasias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Neoplasias/patología , Proteínas Quinasas/metabolismo , Estabilidad Proteica/efectos de los fármacos
16.
Oncotarget ; 7(45): 73270-73279, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27689327

RESUMEN

Overexpression of Mcl-1 is implicated in resistance of several cancers to chemotherapeutic treatment, therefore identifying a safe way to decrease its expression in tumor cells represents a central goal. We investigated if a modulation of the diet could impact on Mcl-1 expression using a Myc-driven lymphoma model. We established that a partial reduction of caloric intake by 25% represents an efficient way to decrease Mcl-1 expression in tumor cells. Furthermore, using isocaloric custom diets, we observed that carbohydrates (CHO) are the main regulators of Mcl-1 expression within the food. Indeed, feeding lymphoma-bearing mice with a diet having 25% less carbohydrates was sufficient to decrease Mcl-1 expression by 50% in lymphoma cells. We showed that a low CHO diet resulted in AMPK activation and mTOR inhibition leading to eukaryotic elongation factor 2 (eEF2) inhibition, blocking protein translation elongation. Strikingly, a low CHO diet was sufficient to sensitize Myc-driven lymphoma-bearing mice to ABT-737-induced cell death in vivo. Thus reducing carbohydrate intake may represent a safe way to decrease Mcl-1 expression and to sensitize tumor cells to anti-cancer therapeutics.


Asunto(s)
Mimetismo Biológico , Dieta Baja en Carbohidratos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Xenoinjertos , Humanos , Linfoma/tratamiento farmacológico , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Nitrofenoles/farmacología , Piperazinas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal , Sulfonamidas/farmacología , Serina-Treonina Quinasas TOR/metabolismo
17.
Mitochondrion ; 30: 126-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26923168

RESUMEN

Mutations in genes coding for mitochondrial helicases such as TWINKLE and DNA2 are involved in mitochondrial myopathies with mtDNA instability in both human and mouse. We show that inactivation of Pif1, a third member of the mitochondrial helicase family, causes a similar phenotype in mouse. pif1-/- animals develop a mitochondrial myopathy with respiratory chain deficiency. Pif1 inactivation is responsible for a deficiency to repair oxidative stress-induced mtDNA damage in mouse embryonic fibroblasts that is improved by complementation with mitochondrial isoform mPif1(67). These results open new perspectives for the exploration of patients with mtDNA instability disorders.


Asunto(s)
ADN Helicasas/antagonistas & inhibidores , Silenciador del Gen , Miopatías Mitocondriales/genética , Animales , Células Cultivadas , Fibroblastos/fisiología , Ratones , Ratones Noqueados , Enfermedades Mitocondriales
18.
FEBS J ; 283(14): 2653-60, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26498911

RESUMEN

In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment.


Asunto(s)
Muerte Celular/fisiología , Neoplasias/metabolismo , Neoplasias/patología , Aminoácidos/metabolismo , Animales , Proliferación Celular/fisiología , Humanos , Redes y Vías Metabólicas , Modelos Biológicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Microambiente Tumoral/fisiología
19.
EMBO Mol Med ; 8(1): 58-72, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26666268

RESUMEN

CHCHD10-related diseases include mitochondrial DNA instability disorder, frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) clinical spectrum, late-onset spinal motor neuropathy (SMAJ), and Charcot-Marie-Tooth disease type 2 (CMT2). Here, we show that CHCHD10 resides with mitofilin, CHCHD3 and CHCHD6 within the "mitochondrial contact site and cristae organizing system" (MICOS) complex. CHCHD10 mutations lead to MICOS complex disassembly and loss of mitochondrial cristae with a decrease in nucleoid number and nucleoid disorganization. Repair of the mitochondrial genome after oxidative stress is impaired in CHCHD10 mutant fibroblasts and this likely explains the accumulation of deleted mtDNA molecules in patient muscle. CHCHD10 mutant fibroblasts are not defective in the delivery of mitochondria to lysosomes suggesting that impaired mitophagy does not contribute to mtDNA instability. Interestingly, the expression of CHCHD10 mutant alleles inhibits apoptosis by preventing cytochrome c release.


Asunto(s)
Apoptosis/genética , Genoma Mitocondrial , Mitocondrias/genética , Proteínas Mitocondriales/genética , Alelos , Línea Celular , Citocromos c/metabolismo , Reparación del ADN/efectos de los fármacos , ADN Mitocondrial/análisis , ADN Mitocondrial/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/toxicidad , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Mutación , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA