Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 316: 115216, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550960

RESUMEN

In treating mine-impacted waters using sulfate-reducing bacteria (SRB), metal inhibition and substrate selection are important factors affecting the efficiency of the bioprocess. This work investigated the role of the substrate (i.e. lactate, formate, glycerol and glucose) on Ni inhibition to SRB with sulfate-reducing activity tests at initial pH 5, 7 and 9 and 100 mg/L of Ni. Results indicated that the type of substrate was a significant factor affecting Ni inhibition in SRB, which was the most negligible in the lactate system, followed by glycerol, glucose, and formate. Although less significant, Ni inhibition also varied with the pH, leading for instance, to a reduction of 77% in the sulfate reducing activity for the formate system, but only of 28% for lactate at pH 5. The added substrate also influenced the precipitation kinetics and the characteristics of the precipitates, reaching Ni precipitation extents above 95%, except for glucose (83.2%).


Asunto(s)
Desulfovibrio , Glicerol , Formiatos , Glucosa , Lactatos , Sulfatos
2.
Environ Technol ; 43(2): 225-236, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32543310

RESUMEN

The capacity of three inocula (sewer biofilm, mangrove and estuary sediment) to utilise typical fermentation products of municipal solid waste for biological sulfate reduction was investigated. Each inoculum was used in two reactors, one fed a mixture of volatile fatty acids and another fed glucose to provide a suite of fermentation products via naturally occurring fermentation. Following 228 days of reactor operation, reactors inoculated with mangrove and estuary sediments exhibited higher sulfate reducing efficiencies (80-88%) compared to the biofilm-inoculated reactors (32-49%). Minimal use of acetate and its accumulation in the biofilm-inoculated reactors pointed to the high abundance of incomplete-oxidising sulfate reducing bacteria (SRB), Desulfovibrio and Desulfobulbus (90-96% of the sulfate reducing population). Although Desulfovibrio was also prominent in reactors inoculated with mangrove and estuary sediments, Desulfobacter, a known acetoclastic sulfate reducer, emerged from trace levels in these sediment (0.01% abundance in the estuary sediments and below detection in the mangrove sediments) to comprise 14%-70% of the sulfate reducing population at the end of reactor operation.


Asunto(s)
Glucosa , Sulfatos , Acetatos , Ácidos Grasos Volátiles , Fermentación
3.
J Environ Manage ; 234: 320-325, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30634124

RESUMEN

The effect and the response of several trace elements (TE) addition to the anaerobic degradation of key compounds of lignocellulosic biomass were evaluated. Lignin, cellulose and xylose were selected as principal compounds of lignocellulosic biomass. Lignin degradation was only improved by the addition of 1000 mg Fe/L, which allowed an improvement on the methane yield coefficient of 28% compared to control. SEM images from an abiotic assay showed that this effect is more likely related with a chemical effect induced by the Fe solution, instead of an enzymatic response. Pre-treatments focused on breaking the recalcitrant structure of the lignin could be more promising than TE addition for rich lignin-content substrates. Unlike to the response observed with lignin, cellulose showed a clear effect of the TE addition on methane production rate, indicating a higher preponderance of the enzymatic activity compared to the lignin biomethanization. Experiments with xylose resulted in a strong accumulation of volatile fatty acids. TE addition should be adapted to the substrate composition given the different response of each lignocellulosic compound to the different TE addition.


Asunto(s)
Biocombustibles , Oligoelementos , Anaerobiosis , Biomasa , Hidrólisis , Lignina , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...