Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(14): 6190-6199, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441242

RESUMEN

Phosphine ligands play a crucial role in homogeneous catalysis, allowing fine-tuning of the catalytic activity of various metals by modifying their structure. An ultimate challenge in this field is to reach controlled modulation of catalysis in situ, for which the development of phosphines capable of photoswitching between states with differential electronic properties has been proposed. To magnify this light-induced behavior, in this work we describe a novel phosphine ligand incorporating two dithienylethene photoswitchable moieties tethered to the same phosphorus atom. Double photoisomerization was observed for this ligand, which remains unhindered upon gold(I) complexation. As a result, the preparation of a fully ring-closed phosphine isomer was accomplished, for which amplified variation of phosphorus electron density was verified both experimentally and by computational calculations. Accordingly, the presented molecular design based on multiphotochromic phosphines could open new ways for preparing enhanced photoswitchable catalytic systems.

2.
Org Lett ; 23(7): 2405-2410, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33620229

RESUMEN

The control of chemical functionalization with orthogonal light stimuli paves the way toward manipulating materials with unprecedented spatiotemporal resolution. To reach this goal, we herein introduce a photochemical reaction system that enables two-color control of covalent ligation via an oxo-Diels-Alder cycloaddition between two separate light-responsive molecular entities: a UV-activated photocaged diene based on ortho-quinodimethanes and a carbonyl dienophile appended to a diarylethene photoswitch, whose reactivity can be modulated upon illumination with UV and visible light.

3.
J Org Chem ; 83(16): 9166-9177, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29898600

RESUMEN

Fluorescent switches based on spirocyclic zwitterionic Meisenheimer (SZMC) complexes are stimuli-responsive organic molecules with application in a variety of areas. To expand their functionality, novel switching mechanisms are herein reported for these systems: (a) acid- and redox-triggered formation of an additional protonation state with distinct optical properties, and (b) solvent-induced fluorescence modulation. We demonstrate that these new features, which enable both multistimuli and multistate operation of SZMC switches, can be exploited in the preparation of smart organic materials: wide-range pH optical probes, electrochromic and electrofluorochromic films, and polymer-based fluorescent detectors of organic liquids.

4.
Molecules ; 22(11)2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29077037

RESUMEN

Stable zwitterionic spirocyclic Meisenheimer compounds were synthesized using a one-step reaction between picric acid and diisopropyl (ZW1) or dicyclohexyl (ZW3) carbodiimide. A solution of these compounds displays intense orange fluorescence upon UV or visible light excitation, which can be quenched or "turned-off" by adding a mole equivalent amount of F- or CN- ions in acetonitrile. Fluorescence is not quenched in the presence of other ions such as Cl-, Br-, I-, NO2-, NO3-, or H2PO4-. These compounds can therefore be utilized as practical colorimetric and fluorescent probes for monitoring the presence of F- or CN- anions.


Asunto(s)
Colorimetría/métodos , Cianuros/análisis , Fluoruros/análisis , Iones/análisis , Compuestos Orgánicos/análisis , Fluorescencia , Compuestos Orgánicos/síntesis química , Procesos Fotoquímicos , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...