Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276593

RESUMEN

One common event that is the most detrimental in neurodegenerative disorders, even though they have a complex pathogenesis, is the increased rate of neuronal death. Endogenous neurotrophins consist of the major neuroprotective factors, while brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine kinase receptor TrkB are described in a number of studies for their important neuronal effects. Normal function of this receptor is crucial for neuronal survival, differentiation, and synaptic function. However, studies have shown that besides direct activation, the TrkB receptor can be transactivated via GPCRs. It has been proven that activation of the 5-HT4 receptor and transactivation of the TrkB receptor have a positive influence on neuronal differentiation (total dendritic length, number of primary dendrites, and branching index). Because of that and based on the main structural characteristics of LM22A-4, a known activator of the TrkB receptor, and RS67333, a partial 5-HT4 receptor agonist, we have designed and synthesized a small data set of novel compounds with potential dual activities in order to not only prevent neuronal death, but also to induce neuronal differentiation in neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Receptor trkB , Fármacos Neuroprotectores/farmacología , Serotonina , Células Cultivadas , Factor Neurotrófico Derivado del Encéfalo , Enfermedades Neurodegenerativas/tratamiento farmacológico
2.
Eur J Med Chem ; 248: 115111, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36645981

RESUMEN

Numerous studies have been published about the implication of the neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis and motor neuron disease. BDNF activates the TrkB receptor with high potency and specificity, promoting neuronal survival, differentiation and synaptic plasticity. Based on the main structural characteristics of LM22A-4, a previously published small molecule that acts as activator of the TrkB receptor, we have designed and synthesized a small data set of compounds. The lead idea for the design of the new compounds was to modify the third position of the LM22A-4, by introducing different substitutions in order to obtain compounds which will have not only better physicochemical properties but selective activity as well. ADME and toxicity profiles of molecules have been evaluated as well as their biological properties through the TrkB receptor and affinity to promote neurite differentiation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptor trkB , Receptor trkB/metabolismo , Factor Neurotrófico Derivado del Encéfalo/fisiología , Benzamidas , Transducción de Señal
3.
Cells ; 11(17)2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36078167

RESUMEN

The antibiotic tetracycline demeclocycline (DMC) was recently reported to rescue α-synuclein (α-Syn) fibril-induced pathology. However, the antimicrobial activity of DMC precludes its potential use in long-term neuroprotective treatments. Here, we synthesized a doubly reduced DMC (DDMC) derivative with residual antibiotic activity and improved neuroprotective effects. The molecule was obtained by removal the dimethylamino substituent at position 4 and the reduction of the hydroxyl group at position 12a on ring A of DMC. The modifications strongly diminished its antibiotic activity against Gram-positive and Gram-negative bacteria. Moreover, this compound preserved the low toxicity of DMC in dopaminergic cell lines while improving its ability to interfere with α-Syn amyloid-like aggregation, showing the highest effectiveness of all tetracyclines tested. Likewise, DDMC demonstrated the ability to reduce seeding induced by the exogenous addition of α-Syn preformed fibrils (α-SynPFF) in biophysical assays and in a SH-SY5Y-α-Syn-tRFP cell model. In addition, DDMC rendered α-SynPFF less inflammogenic. Our results suggest that DDMC may be a promising drug candidate for hit-to-lead development and preclinical studies in Parkinson's disease and other synucleinopathies.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Sinucleinopatías , Antibacterianos/farmacología , Demeclociclina , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Plomo , Fármacos Neuroprotectores/farmacología
4.
Physiol Rep ; 7(9): e14072, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050222

RESUMEN

Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Degeneración Nerviosa/fisiopatología , Regeneración Nerviosa/efectos de los fármacos , Células Madre/metabolismo , Animales , Arsenitos , Astrocitos/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Cultivadas , Exosomas/metabolismo , Fibroblastos/metabolismo , Ácido Glutámico , Humanos , L-Lactato Deshidrogenasa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Degeneración Nerviosa/patología , Células-Madre Neurales/metabolismo , Neuritas/efectos de los fármacos , Neuritas/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas
5.
SLAS Technol ; 23(3): 207-216, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29412765

RESUMEN

Nomad Technology (Innoprot [Innovative Technologies in Biological Systems], Derio, Spain), a novel tool for multiplexing high-throughput cell-based G protein-coupled receptor (GPCR) assays, is described in this work. This new technology comprises a family of fluorescent biosensors called Nomad Biosensors that allow for the measurement of responses mediated by G proteins through their interactions with second-messenger transduction proteins. GPCRs are one of the largest protein families of receptors in eukaryotes, and their signaling mediates important physiological processes within cells. Thus, GPCRs are associated with a wide variety of diseases, and considered major targets in therapeutic research. Nomad constitutes a novel tool for unraveling the mechanism of GPCR signal transduction by simultaneously tracing different pathways. GPCR activation changes the structural folding of the biosensor and promotes its vesicularization, as well as an increase in the fluorescence intensity. Based on this technology, the MPXNomad cellular model was developed to discriminate between the Ca2+-mediated pathway and the cyclic adenosine monophosphate (cAMP)-mediated pathway. To validate this model, endothelin receptor B (ETBR) was coexpressed into the MPXNomad cell line and assessed with a specific agonist, an antagonist, and a chemical library of compounds. Nomad Technology optimizes the identification of novel GPCR ligands and enables the testing of large numbers of compounds.


Asunto(s)
Técnicas Biosensibles , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Calcio/metabolismo , Línea Celular Tumoral , Clonación Molecular , AMP Cíclico/metabolismo , Endotelinas/metabolismo , Fluorescencia , Humanos , Procesamiento de Imagen Asistido por Computador , Ligandos , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal
6.
Neural Regen Res ; 12(2): 214-215, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28400800
7.
SLAS Discov ; 22(1): 67-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27703082

RESUMEN

Parkinson disease (PD) is a prevalent neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra, causing tremor and motor impairment. Parkin protein, whose mutants are the cause of Parkinson disease type 2 (PARK2), has been mechanistically linked to the regulation of apoptosis and the turnover of damaged mitochondria. Several studies have implicated aberrant mitochondria as a key contributor to the development of PD. In the attempt to discover new drugs, high-content cell-based assays are becoming more important to mimic the nature of biological processes and their diversifications in diseases and will be essential for lead identification and the optimization of therapeutic candidates. We have developed a novel fluorescence cell-based assay for high-content screening to find compounds that can promote the mitochondrial localization of Parkin without severe mitochondrial damage induction. In this work, this model was used to screen a library of 1280 compounds. After the screening campaign, the positive compounds were chosen for further testing, based on the strength of the initial response and lack of cytotoxicity. These results indicated that this Parkin cell-based assay is a robust (Z' > 0.5) and valid strategy to test potential candidates for preclinical studies.


Asunto(s)
Bioensayo/métodos , Evaluación Preclínica de Medicamentos/métodos , Enfermedad de Parkinson/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Fluorescencia , Humanos , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Proscilaridina/uso terapéutico , Rodaminas
8.
J Inorg Biochem ; 157: 80-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26828287

RESUMEN

Chemotherapy using metal coordination compounds for cancer treatment is the work of the ongoing research. Continuing our research on the improvement of the anticancer activity of natural flavonoids by metal complexation, a coordination compound of the natural antioxidant flavone luteolin (lut) and the oxidovanadium(IV) cation has been synthesized and characterized. Using different physicochemical measurements some structural aspects of [VO(lut)(H2O)2]Na·3H2O (VOlut) were determined. The metal coordinated to two cis-deprotonated oxygen atoms (ArO(-)) of the ligand and two H2O molecules. Magnetic measurements in solid state indicated the presence of an effective exchange pathway between adjacent vanadium ions. VOlut improved the antioxidant capacity of luteolin only against hydroxyl radical. The antitumoral effects were evaluated on MDAMB231 breast cancer and A549 lung cancer cell lines. VOlut exhibited higher viability inhibition (IC50=17 µM) than the ligand on MDAMB231 cells but they have the same behavior on A549 cells (ca. IC50=60 µM). At least oxidative stress processes were active during cancer cell-killing. When metals chelated through the carbonyl group and one adjacent OH group of the flavonoid an effective improvement of the biological properties has been observed. In VOlut the different coordination may be the cause of the small improvement of some of the tested properties of the flavonoid. Luteolin and VOlut could be distributed and transported in vivo. Luteolin interacted in the microenvironment of the tryptophan group of the serum binding protein, BSA, by means of electrostatic forces and its complex bind the protein by H bonding and van der Waals interactions.


Asunto(s)
Antineoplásicos/química , Antioxidantes/química , Luteolina/química , Albúmina Sérica Bovina/química , Compuestos de Vanadio/química , Espectroscopía de Resonancia por Spin del Electrón , Unión Proteica , Espectrofotometría Ultravioleta
9.
PLoS One ; 9(11): e113704, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25423178

RESUMEN

Double-stranded RNA-binding proteins are key elements in the intracellular localization of mRNA and its local translation. Staufen is a double-stranded RNA binding protein involved in the localised translation of specific mRNAs during Drosophila early development and neuronal cell fate. The human homologue Staufen1 forms RNA-containing complexes that include proteins involved in translation and motor proteins to allow their movement within the cell, but the mechanism underlying translation repression in these complexes is poorly understood. Here we show that human Staufen1-containing complexes contain essential elements of the gene silencing apparatus, like Ago1-3 proteins, and we describe a set of miRNAs specifically associated to complexes containing human Staufen1. Among these, miR-124 stands out as particularly relevant because it appears enriched in human Staufen1 complexes and is over-expressed upon differentiation of human neuroblastoma cells in vitro. In agreement with these findings, we show that expression of human Staufen1 is essential for proper dendritic arborisation during neuroblastoma cell differentiation, yet it is not necessary for maintenance of the differentiated state, and suggest potential human Staufen1 mRNA targets involved in this process.


Asunto(s)
Diferenciación Celular , Proteínas del Citoesqueleto/metabolismo , Dendritas/fisiología , MicroARNs/metabolismo , Neuronas/citología , Proteínas de Unión al ARN/metabolismo , Línea Celular , Humanos , Unión Proteica
10.
PLoS One ; 6(9): e25508, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980481

RESUMEN

M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/genética , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Transporte de Proteínas
11.
Oncol Rep ; 26(4): 971-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21701781

RESUMEN

Discoidin domain receptors (DDR1 and DDR2) are tyrosine kinase receptors for fibrillar collagen implicated in postnatal development, tissue repair, and primary and metastatic cancer progression. While DDR1 has been described in tumor cells, DDR2 has been localized in the tumor stroma, but its presence in the tumor cells remains unknown. The aim of this study was to elucidate the role of DDR2 signaling in tumor cells during hepatic metastasis progression. DDR2 expression and phosphorylation in cultured human A375 melanoma cells was documented by Western blot analysis. A375 cells were stably transfected with a small interfering RNA (siRNA) against DDR2 and two clones were selected: A375R2-70 and A375R2-40, with 70 and 40% of the DDR2 protein expression respectively, compared to mock-transfected cells (A375R2-100). Development of experimental liver metastasis by intrasplenic inoculation of A375R2-70 and A37R2-40 clones was reduced by 60 and 75%, respectively, measured as tumor volume, compared to livers injected with A375R2-100 cells. Accordingly, A375R2-70 and A37R2-40 clones showed reduced in vitro gelatinase activity and JNK phosphorylation, compared to mock transfected cells, with maximal inhibition in A375R2-40. Additionally, A375 melanoma, SK-HEP hepatoma and HT-29 colon carcinoma human cell lines transiently transfected with siRNA against DDR2 also showed reduced proliferation and migration rates compared to mock-transfected ones. In conclusion, DDR2 promotes A375 melanoma metastasis to the liver and the underlying mechanism implicates regulation of metalloproteinase release, cell growth and chemotactic invasion of the host tissue.


Asunto(s)
Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/secundario , Melanoma/enzimología , Melanoma/secundario , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Mitogénicos/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Receptores con Dominio Discoidina , Regulación hacia Abajo , Femenino , Células HT29 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Melanoma/genética , Melanoma/patología , Metaloproteasas/biosíntesis , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Fosforilación , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Mitogénicos/biosíntesis , Receptores Mitogénicos/genética , Transducción de Señal , Transfección
12.
FASEB J ; 22(4): 1135-43, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17993630

RESUMEN

Voltage-dependent potassium KCNQ2 (Kv7.2) channels play a prominent role in the control of neuronal excitability. These channels must associate with calmodulin to function correctly and, indeed, a mutation (R353G) that impairs this association provokes the onset of a form of human neonatal epilepsy known as benign familial neonatal convulsions (BFNC). We show here that perturbation of calmodulin binding leads to endoplasmic reticulum (ER) retention of KCNQ2, reducing the number of channels that reach the plasma membrane. Interestingly, elevating the expression of calmodulin in the BFNC mutant partially restores the intracellular distribution of the KCNQ channel. In contrast, overexpression of a Ca(2+)-binding incompetent calmodulin or sequestering of calmodulin promotes the retention of wild-type channels in the ER. Thus, a direct interaction with Ca(2+)-calmodulin appears to be critical for the correct activity of KCNQ2 potassium channels as it controls the channels' exit from the ER.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Canal de Potasio KCNQ3/metabolismo , Mutación , Técnicas de Placa-Clamp , Transporte de Proteínas
13.
Nucleic Acids Res ; 32(8): 2411-20, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15121898

RESUMEN

hStaufen is the human homolog of dmStaufen, a double-stranded (ds)RNA-binding protein involved in early development of the fly. hStaufen-containing complexes were purified by affinity chromatography from human cells transfected with a TAP-tagged hStaufen gene. These complexes showed a size >10 MDa. Untagged complexes with similar size were identified from differentiated human neuroblasts. The identity of proteins present in purified hStaufen complexes was determined by mass spectrometry and the presence of these proteins and other functionally related ones was verified by western blot. Ribosomes and proteins involved in the control of protein synthesis (PABP1 and FMRP) were present in purified hStaufen complexes, as well as elements of the cytoskeleton (tubulins, tau, actin and internexin), cytoskeleton control proteins (IQGAP1, cdc42 and rac1) and motor proteins (dynein, kinesin and myosin). In addition, proteins normally found in the nucleus, like nucleolin and RNA helicase A, were also found associated with cytosolic hStaufen complexes. The co-localization of these components with hStaufen granules in the dendrites of differentiated neuroblasts, determined by confocal immunofluorescence, validated their association in living cells. These results support the notion that the hStaufen-containing granules are structures essential in the localization and regulated translation of human mRNAs in vivo.


Asunto(s)
Gránulos Citoplasmáticos/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/fisiología , ARN/análisis , Transportadoras de Casetes de Unión a ATP , Transporte Biológico , Línea Celular , Proteínas del Citoesqueleto/análisis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Sustancias Macromoleculares , Proteínas Asociadas a Microtúbulos/análisis , Neuronas/química , Neuronas/metabolismo , Proteínas Nucleares/análisis , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...