Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 12(18)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37759490

RESUMEN

Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when investigating the mechanisms behind alcohol-related disorders and treatment strategies.


Asunto(s)
Alcoholismo , Microbiota , Neumonía Bacteriana , Humanos , Animales , Ratones , Alcoholismo/complicaciones , Disbiosis/complicaciones , Etanol
2.
Pathogens ; 12(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37242309

RESUMEN

Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans.

3.
Front Immunol ; 13: 934617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105802

RESUMEN

Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1-3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.


Asunto(s)
Enfermedades del Sistema Inmune , Inmunidad Innata , Humanos , Células Asesinas Naturales , Hígado , Tejido Linfoide
4.
Front Microbiol ; 13: 828704, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300484

RESUMEN

Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.

5.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790946

RESUMEN

Microbial endocrinology represents the union of microbiology and neurobiology and is concerned with the ability of neurochemicals to serve as an evolutionary-based language between host and microbiota in health and disease. The recognition that microorganisms produce, modify and respond to the same neurochemicals utilized in the various signaling pathways of their mammalian hosts is increasingly being recognized as a mechanism by which the host and microbiota may interact to influence the progression of infectious disease as well as influence behavior through the microbiota-gut-brain axis. While the capacity for bacteria to produce neurochemicals has been recognized for decades, the degree to which this occurs in the environment of the gastrointestinal tract is still poorly understood. By combining techniques used in analytic chemistry, food science and environmental microbiology, a novel culture-based method was developed which generates a medium utilizing animal feed which resembles the contents of the small intestine. The usage of this medium allows for the in vitro growth of bacteria native to the gastrointestinal tract in an environment that is reflective of the small-intestinal host-based milieu. We describe a detailed protocol for the preparation of this medium and the quantification of neurochemicals by microorganisms grown therein. Catecholamines including dopamine and its precursor L-3,4-dihydroxyphenalanine (L-DOPA) as well as biogenic amines including tyramine and its precursor tyrosine, serve as prototypical examples of neurochemicals that are quantifiable with the methods described herein.


Asunto(s)
Acetilcolina/metabolismo , Dihidroxifenilalanina/metabolismo , Dopamina/metabolismo , Microbioma Gastrointestinal/fisiología , Intestino Delgado/metabolismo , Tiramina/metabolismo , Alimentación Animal/microbiología , Animales , Química Encefálica , Enfermedades Transmisibles , Enterococcus faecium/metabolismo , Intestino Delgado/microbiología , Lactobacillus plantarum/metabolismo , Transducción de Señal/fisiología
6.
J Dairy Sci ; 101(6): 5619-5628, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550113

RESUMEN

The union of microbiology and neurobiology, which has been termed microbial endocrinology, is defined as the study of the ability of microorganisms to produce and respond to neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. It serves as the basis for an evolutionarily derived method of communication between a host and its microbiota. Mechanisms elucidated by microbial endocrinology give new insight into the ways the microbiota can affect host stress, metabolic efficiency, resistance to disease, and other factors that may prove relevant to the dairy industry.


Asunto(s)
Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Microbiota/fisiología , Rumiantes , Animales , Recuento de Células , Células Epiteliales
7.
Front Microbiol ; 9: 3092, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619171

RESUMEN

Utilizing a simulated gastrointestinal medium which approximates physiological conditions within the mammalian GI tract, experiments aimed at isolating and identifying unique microbial metabolites were conducted. These efforts led to the finding that Escherichia coli, a common member of the gut microbiota, is capable of producing significant quantities of salsolinol. Salsolinol is a neuroactive compound which has been investigated as a potential contributor to the development of neurodegenerative diseases such as Parkinson's disease (PD). However the origin of salsolinol within the body has remained highly contested. We herein report the first demonstration that salsolinol can be made in vitro in response to microbial activity. We detail the isolation and identification of salsolinol produced by E. coli, which is capable of producing salsolinol in the presence of dopamine with production enhanced in the presence of alcohol. That this discovery was found in a medium that approximates gut conditions suggests that microbial salsolinol production could exist in the gut. This discovery lays the ground work for follow up in vivo investigations to explore whether salsolinol production is a mechanism by which the microbiota may influence the host. As salsolinol has been implicated in the pathogenesis of PD, this work may be relevant, for example, to investigators who have suggested that the development of PD may have a gut origin. This report suggests, but does not establish, an alternative microbiota-based mechanism to explain how the gut may play a critical role in the development of PD as well other conditions involving altered neuronal function due to salsolinol-induced neurotoxicity.

8.
Poult Sci ; 96(8): 2501-2508, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050443

RESUMEN

The union of microbiology and neurobiology has led to a revolution in the way we view the microbiome. Now recognized as important symbionts, the microorganisms which inhabit multiple niches in mammalian and avian (chicken) hosts, such as the intestinal tract and skin, serve and influence many important physiological functions. The realization that the gut microbiome serves as a kind of "microbial organ" has important implications for many areas of biology. In this paper advances in the field of microbial endocrinology which may hold relevance for the poultry industry are examined.


Asunto(s)
Sistema Endocrino/fisiología , Microbiota , Aves de Corral/microbiología , Aves de Corral/fisiología , Crianza de Animales Domésticos , Bienestar del Animal , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...