Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 483(7387): 82-6, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22367542

RESUMEN

The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.


Asunto(s)
Cromosomas Humanos Y/genética , Secuencia Conservada/genética , Evolución Molecular , Eliminación de Gen , Macaca mulatta/genética , Cromosoma Y/genética , Animales , Intercambio Genético/genética , Amplificación de Genes/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Pan troglodytes/genética , Mapeo de Híbrido por Radiación , Selección Genética/genética , Factores de Tiempo
2.
Cell ; 145(7): 1036-48, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21703448

RESUMEN

Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well-characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders.


Asunto(s)
Epilepsia/genética , Perfilación de la Expresión Génica , Canales Iónicos/genética , Polimorfismo de Nucleótido Simple , Simulación por Computador , Epistasis Genética , Hipocampo/metabolismo , Humanos , Mutación Missense , Neuronas/metabolismo , Medición de Riesgo
3.
Nat Commun ; 1: 131, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119644

RESUMEN

Accurately determining the distribution of rare variants is an important goal of human genetics, but resequencing of a sample large enough for this purpose has been unfeasible until now. Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 African Americans) and validated amplicons potentially harbouring rare variants using 454 pyrosequencing. We observed far more variation (expected variant-site count ∼578) than would have been predicted on the basis of earlier surveys, which could only capture the distribution of common variants. By comparison with earlier estimates based on common variants, our model shows a clear genetic signal of accelerating population growth, suggesting that humanity harbours a myriad of rare, deleterious variants, and that disease risk and the burden of disease in contemporary populations may be heavily influenced by the distribution of rare variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...