Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6728, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185355

RESUMEN

This study reports a set of primeval marine incursions identified in two drill cores, 1PS-06-CE, and 1PS-10-CE, which recovered the Barbalha Formation, Araripe Basin, Brazil. Based on a multi-proxy approach involving stratigraphy, microbiofacies, ichnofossils, and microfossils, three short-lived marine incursions were identified, designated Araripe Marine Incursions (AMI) 1-3. AMI-1 and AMI-2, which occur within the shales of the Batateira Beds (lower part of the Barbalha Formation), were identified by the occurrence of benthonic foraminifera, calcareous nannofossils, dinocysts, and a mass mortality event of non-marine ostracods. AMI-3 was recognized in the upper part of the Barbalha Formation, based on the occurrence of ichnofossils and planktonic foraminifera. The observation of the planktonic foraminifera genus Leupoldina for the first time in the basin indicates early Aptian/early late Aptian age for these deposits, and the first opportunity of correlation with global foraminifera biozonation. Our findings have implications for the breakup of the Gondwana Supercontinent, as these incursions represent the earliest marine-derived flooding events in the inland basins of northeastern Brazil.


Asunto(s)
Foraminíferos , Fósiles , Animales , Brasil , Crustáceos , Plancton
2.
ACS Appl Mater Interfaces ; 15(12): 16253-16265, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926806

RESUMEN

Surface-mediated transmission of pathogens is a major concern with regard to the spread of infectious diseases. Current pathogen prevention methods on surfaces rely on the use of biocides, which aggravate the emergence of antimicrobial resistance and pose harmful health effects. In response, a bifunctional and substrate-independent spray coating is presented herein. The bifunctional coating relies on wrinkled polydimethylsiloxane microparticles, decorated with biocidal gold nanoparticles to induce a "repel and kill" effect against pathogens. Pathogen repellency is provided by the structural hierarchy of the microparticles and their surface chemistry, whereas the kill mechanism is achieved using functionalized gold nanoparticles embedded on the microparticles. Bacterial tests with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa reveal a 99.9% reduction in bacterial load on spray-coated surfaces, while antiviral tests with Phi6─a bacterial virus often used as a surrogate to SARS-CoV-2─demonstrate a 98% reduction in virus load on coated surfaces. The newly developed spray coating is versatile, easily applicable to various surfaces, and effective against various pathogens, making it suitable for reducing surface contamination in frequently touched, heavy traffic, and high-risk surfaces.


Asunto(s)
Desinfectantes , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Oro/farmacología , Nanopartículas del Metal/química , Desinfectantes/farmacología , Bacterias , Antibacterianos/química
3.
Small ; 19(12): e2205761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587985

RESUMEN

Engineered surfaces that repel pathogens are of great interest due to their role in mitigating the spread of infectious diseases. A robust, universal, and scalable omniphobic spray coating with excellent repellency against water, oil, and pathogens is presented. The coating is substrate-independent and relies on hierarchically structured polydimethylsiloxane (PDMS) microparticles, decorated with gold nanoparticles (AuNPs). Wettability studies reveal the relationship between surface texturing of micro- and/or nano-hierarchical structures and the omniphobicity of the coating. Studies of pathogen transfer with bacteria and viruses reveal that an uncoated contaminated glove transfers pathogens to >50 subsequent surfaces, while a coated glove picks up 104 (over 99.99%) less pathogens upon first contact and transfers zero pathogens after the second touch. The developed coating also provides excellent stability under harsh conditions. The remarkable anti-pathogen properties of this surface combined with its ease of implementation, substantiate its use for the prevention of surface-mediated transmission of pathogens.


Asunto(s)
Oro , Nanopartículas del Metal , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Tacto
4.
Sci Rep ; 12(1): 5380, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354896

RESUMEN

Titanium alloys, in particular, medical-grade Ti-6Al-4 V, are heavily used in orthopaedic applications due to their high moduli, strength, and biocompatibility. Implant infection can result in biofilm formation and failure of prosthesis. The formation of a biofilm on implants protects bacteria from antibiotics and the immune response, resulting in the propagation of the infection and ultimately resulting in device failure. Recently, slippery liquid-infused surfaces (LIS) have been investigated for their stable liquid interface, which provides excellent repellent properties to suppress biofilm formation. One of the current limitations of LIS coatings lies in the indistinctive repellency of bone cells in orthopaedic applications, resulting in poor tissue integration and bone ingrowth with the implant. Here, we report a chitosan impregnated LIS coating that facilitates cell adhesion while preventing biofilm formation. The fabricated coating displayed high contact angles (108.2 ± 5.2°) and low sliding angles (3.56 ± 4.3°). Elemental analysis obtained using X-ray photoelectron spectroscopy (XPS) confirmed the availability of fluorine and nitrogen, indicating the presence of fluorosilane and chitosan in the final coating. Furthermore, our results suggest that chitosan-conjugated LIS increased cell adhesion of osteoblast-like SaOS-2 cells and significantly promoted proliferation (a fourfold increase at 7-day incubation) compared to conventional titanium liquid-infused surfaces. Furthermore, the chitosan conjugated LIS significantly reduced biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) by up to 50% and 75% when compared to untreated titanium and chitosan-coated titanium, respectively. The engineered coating can be easily modified with other biopolymers or capture molecules to be applied to other biomaterials where tissue integration and biofilm prevention are needed.


Asunto(s)
Quitosano , Staphylococcus aureus Resistente a Meticilina , Bacterias , Biopelículas , Quitosano/farmacología , Oseointegración , Propiedades de Superficie , Titanio/química , Titanio/farmacología
5.
ACS Appl Mater Interfaces ; 13(24): 27774-27783, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34115463

RESUMEN

Medical device-associated infections are an ongoing problem. Once an implant is infected, bacteria create a complex community on the surface known as a biofilm, protecting the bacterial cells against antibiotics and the immune system. To prevent biofilm formation, several coatings have been engineered to hinder bacterial adhesion or viability. In recent years, liquid-infused surfaces (LISs) have been shown to be effective in repelling bacteria due to the presence of a tethered liquid interface. However, local lubricant loss or temporary local displacement can lead to bacteria penetrating the lubrication layer, which can then attach to the surface, proliferate, and form a biofilm. Biofilm formation on biomedical devices can subsequently disrupt the chemistry tethering the slippery liquid interface, causing the LIS coating to fail completely. To address this concern, we developed a "fail-proof" multifunctional coating through the combination of a LIS with tethered antibiotics. The coatings were tested on a medical-grade stainless steel using contact angle, sliding angle, and Fourier transform infrared spectroscopy. The results confirm the presence of antibiotics while maintaining a stable and slippery liquid interface. The antibiotic liquid-infused surface significantly reduced biofilm formation (97% reduction compared to the control) and was tested against two strains of Staphylococcus aureus, including a methicillin-resistant strain. We also demonstrated that antibiotics remain active and reduce bacteria proliferation after subsequent coating modifications. This multifunctional approach can be applied to other biomaterials and provide not only a fail-safe but a fail-proof strategy for preventing bacteria-associated infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Fluorocarburos/química , Glicopéptidos/farmacología , Humanos , Lubricantes/química , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Acero Inoxidable/química
6.
ACS Nano ; 13(8): 8517-8536, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31373794

RESUMEN

Due to inspiration from the Nepenthes pitcher plant, a frontier of devices has emerged with unmatched capabilities. Liquid-infused surfaces (LISs), particularly known for their liquid-repelling behavior under low tilting angles (<5°), have demonstrated a plethora of applications in medical, marine, energy, industrial, and environmental materials. This review presents recent developments of LIS technology and its prospective to define the future direction of this technology in solving tomorrow's real-life challenges. First, an introduction to the different models explaining the physical phenomena of these surfaces, their wettability, and viscous-dependent frictional forces is discussed. Then, an outline of different emerging strategies required to fabricate a stable liquid-infused interface is presented, including different substrates, lubricants, surface chemistries, and design parameters which can be tuned depending on the application. Furthermore, applications of LIS coatings in the areas of anticorrosion, antifouling, anti-icing, self-healing, droplet manipulation, and biomedical devices will be presented followed by the limitations and future direction of this technology.

7.
Anal Chim Acta ; 1000: 248-255, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29289317

RESUMEN

The advent of 3D printing has allowed for rapid bench-top fabrication of molds for casting polydimethylsiloxane (PDMS) chips, a widely-used polymer in prototyping microfluidic devices. While fabricating PDMS devices from 3D printed molds is fast and cost-effective, creating smooth surface topology is highly dependent on the printer's quality. To produce smooth PDMS channels from these molds, we propose a novel technique in which a lubricant is tethered to the surface of a 3D printed mold, which results in a smooth interface for casting PDMS. Fabricating the omniphobic-lubricant-infused molds (OLIMs) was accomplished by coating the mold with a fluorinated-silane to produce a high affinity for the lubricant, which tethers it to the mold. PDMS devices cast onto OLIMs produced significantly smoother topology and can be further utilized to fabricate smooth-channeled PDMS devices. Using this method, we reduced the surface roughness of PDMS microfluidic channels from 2 to 0.2 µm (10-fold decrease), as well as demonstrated proper operation of the fabricated devices with superior optical properties compared to the rough devices. Furthermore, a COMSOL simulation was performed to investigate how the distinct surface topographies compare regarding their volumetric velocity profile and the shear rate produced. Simulation results showed that, near the channel's surface, variations in flow regime and shear stress is significantly reduced for the microfluidic channels cast on OLIM compared to the ones cast on uncoated 3D printed molds. The proposed fabrication method produces high surface-quality microfluidic devices, comparable to the ones cast on photolithographically fabricated molds while eliminating its costly and time-consuming fabrication process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA