Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nat Commun ; 15(1): 4706, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830849

RESUMEN

The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Tauopatías , Sustancia Blanca , Proteínas tau , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Femenino , Masculino , Anciano , Persona de Mediana Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genética , Tauopatías/líquido cefalorraquídeo , Proteínas tau/metabolismo , Proteínas tau/líquido cefalorraquídeo , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Neuritas/metabolismo , Neuritas/patología
2.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766113

RESUMEN

Importance: Positron emission tomography (PET) biomarkers are the gold standard for detection of Alzheimer amyloid and tau in vivo . Such imaging can identify cognitively unimpaired (CU) individuals who will subsequently develop cognitive impartment (CI). Plasma biomarkers would be more practical than PET or even cerebrospinal fluid (CSF) assays in clinical settings. Objective: Assess the prognostic accuracy of plasma p-tau217 in comparison to CSF and PET biomarkers for predicting the clinical progression from CU to CI. Design: In a cohort of elderly at high risk of developing Alzheimer's dementia (AD), we measured the proportion of CU individuals who developed CI, as predicted by Aß (A+) and/or tau (T+) biomarker assessment from plasma, CSF, and PET. Results from each method were compared with (A-T-) reference individuals. Data were analyzed from June 2023 to April 2024. Setting: Longitudinal observational cohort. Participants: Some 228 participants from the PREVENT-AD cohort were CU at the time of biomarker assessment and had 1 - 10 years of follow-up. Plasma was available from 215 participants, CSF from 159, and amyloid- and tau-PET from 155. Ninety-three participants had assessment using all three methods (main group of interest). Progression to CI was determined by clinical consensus among physicians and neuropsychologists who were blind to plasma, CSF, PET, and MRI findings, as well as APOE genotype. Exposures: Plasma Aß 42/40 was measured using IP-MS; CSF Aß 42/40 using Lumipulse; plasma and CSF p-tau217 using UGOT assay. Aß-PET employed the 18 F-NAV4694 ligand, and tau-PET used 18 F-flortaucipir. Main Outcome: Prognostic accuracy of plasma, CSF, and PET biomarkers for predicting the development of CI in CU individuals. Results: Cox proportional hazard models indicated a greater progression rate in all A+T+ groups compared to A-T-groups (HR = 6.61 [95% CI = 2.06 - 21.17] for plasma, 3.62 [1.49 - 8.81] for CSF and 9.24 [2.34 - 36.43] for PET). The A-T+ groups were small, but also characterized with individuals who developed CI. Plasma biomarkers identified about five times more T+ than PET. Conclusion and relevance: Plasma p-tau217 assessment is a practical method for identification of persons who will develop cognitive impairment up to 10 years later. Key Points: Question: Can plasma p-tau217 serve as a prognostic indicator for identifying cognitively unimpaired (CU) individuals at risk of developing cognitive impairments (CI)?Findings: In a longitudinal cohort of CU individuals with a family history of sporadic AD, almost all individuals with abnormal plasma p-tau217 concentrations developed CI within 10 years, regardless of plasma amyloid levels. Similar findings were obtained with CSF p-tau217 and tau-PET. Fluid p-tau217 biomarkers had the main advantage over PET of identifying five times more participants with elevated tau.Meaning: Elevated plasma p-tau217 levels in CU individuals strongly indicate future clinical progression.

3.
Proc Natl Acad Sci U S A ; 121(22): e2322617121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771873

RESUMEN

Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.


Asunto(s)
Envejecimiento , Toma de Decisiones , Locus Coeruleus , Imagen por Resonancia Magnética , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Humanos , Toma de Decisiones/fisiología , Anciano , Masculino , Femenino , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Recompensa
4.
J Alzheimers Dis ; 98(4): 1361-1375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578887

RESUMEN

Background: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective: To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods: Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results: Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p <  0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions: Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas B , Colesterol , Contactinas
5.
medRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38645027

RESUMEN

Two neuropathological hallmarks of Alzheimer's disease (AD) are the accumulation of amyloid-ß (Aß) proteins and alterations in cortical neurophysiological signaling. Despite parallel research indicating disruption of multiple neurotransmitter systems in AD, it has been unclear whether these two phenomena are related to the neurochemical organization of the cortex. We leveraged task-free magnetoencephalography and positron emission tomography, with a cortical atlas of 19 neurotransmitters to study the alignment and interactions between alterations of neurophysiological signaling, Aß deposition, and the neurochemical gradients of the human cortex. In patients with amnestic mild cognitive impairment (N = 18) and probable AD (N = 20), we found that changes in rhythmic, but not arrhythmic, cortical neurophysiological signaling relative to healthy controls (N = 20) are topographically aligned with cholinergic, serotonergic, and dopaminergic neurochemical systems. These neuro-physio-chemical alignments are related to the severity of cognitive and behavioral impairments. We also found that cortical Aß plaques are preferentially deposited along neurochemical boundaries, and mediate how beta-band rhythmic cortical activity maps align with muscarinic acetylcholine receptors. Finally, we show in an independent dataset that many of these alignments manifest in the asymptomatic stages of cortical Aß accumulation (N = 33; N = 71 healthy controls), particularly the Aß-neurochemical alignments (57.1%) and neuro-physio-chemical alignments in the alpha frequency band (62.5%). Overall, the present study demonstrates that the expression of pathology in pre-clinical and clinical AD aligns topographically with the cortical distribution of chemical neuromodulator systems, scaling with clinical severity and with implications for potential pharmacotherapeutic pathways.

6.
Alzheimers Dement ; 20(5): 3364-3377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561254

RESUMEN

INTRODUCTION: We assessed whether macro- and/or micro-structural white matter properties are associated with cognitive resilience to Alzheimer's disease pathology years prior to clinical onset. METHODS: We examined whether global efficiency, an indicator of communication efficiency in brain networks, and diffusion measurements within the limbic network and default mode network moderate the association between amyloid-ß/tau pathology and cognitive decline. We also investigated whether demographic and health/risk factors are associated with white matter properties. RESULTS: Higher global efficiency of the limbic network, as well as free-water corrected diffusion measures within the tracts of both networks, attenuated the impact of tau pathology on memory decline. Education, age, sex, white matter hyperintensities, and vascular risk factors were associated with white matter properties of both networks. DISCUSSION: White matter can influence cognitive resilience against tau pathology, and promoting education and vascular health may enhance optimal white matter properties. HIGHLIGHTS: Aß and tau were associated with longitudinal memory change over ∼7.5 years. White matter properties attenuated the impact of tau pathology on memory change. Health/risk factors were associated with white matter properties.


Asunto(s)
Sustancia Blanca , Proteínas tau , Humanos , Sustancia Blanca/patología , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Imagen de Difusión Tensora , Pruebas Neuropsicológicas , Disfunción Cognitiva/patología , Factores de Riesgo
7.
Sleep ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526098

RESUMEN

STUDY OBJECTIVES: While short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS: We tested 203 dementia-free participants (68.5±5.4y/o, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participant's age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, sleep duration) and general profiles (sleep fragmentation, phase delay, hypersomnia). CSF inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS: Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep, later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, global score). Interactions analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS: Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.

8.
Alzheimers Dement (Amst) ; 16(1): e12521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371359

RESUMEN

INTRODUCTION: Measuring day-to-day sleep variability might reveal unstable sleep-wake cycles reflecting neurodegenerative processes. We evaluated the association between Alzheimer's disease (AD) fluid biomarkers with day-to-day sleep variability. METHODS: In the PREVENT-AD cohort, 203 dementia-free participants (age: 68.3 ± 5.4; 78 males) with a parental history of sporadic AD were tested with actigraphy and fluid biomarkers. Day-to-day variability (standard deviations over a week) was assessed for sleep midpoint, duration, efficiency, and nighttime activity count. RESULTS: Lower cerebrospinal fluid (CSF) ApoE, higher CSF p-tau181/amyloid-ß (Aß)42, and higher plasma p-tau231/Aß42 were associated with higher variability of sleep midpoint, sleep duration, and/or activity count. The associations between fluid biomarkers with greater sleep duration variability were especially observed in those that carried the APOE4 allele, mild cognitive impairment converters, or those with gray matter atrophy. DISCUSSION: Day-to-day sleep variability were associated with biomarkers of AD in at-risk individuals, suggesting that unstable sleep promotes neurodegeneration or, conversely, that AD neuropathology disrupts sleep-wake cycles.

9.
Brain Commun ; 6(1): fcae031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410618

RESUMEN

The accumulation of tau abnormality in sporadic Alzheimer's disease is believed typically to follow neuropathologically defined Braak staging. Recent in-vivo PET evidence challenges this belief, however, as accumulation patterns for tau appear heterogeneous among individuals with varying clinical expressions of Alzheimer's disease. We, therefore, sought a better understanding of the spatial distribution of tau in the preclinical and clinical phases of sporadic Alzheimer's disease and its association with cognitive decline. Longitudinal tau-PET data (1370 scans) from 832 participants (463 cognitively unimpaired, 277 with mild cognitive impairment and 92 with Alzheimer's disease dementia) were obtained from the Alzheimer's Disease Neuroimaging Initiative. Among these, we defined thresholds of abnormal tau deposition in 70 brain regions from the Desikan atlas, and for each group of regions characteristic of Braak staging. We summed each scan's number of regions with abnormal tau deposition to form a spatial extent index. We then examined patterns of tau pathology cross-sectionally and longitudinally and assessed their heterogeneity. Finally, we compared our spatial extent index of tau uptake with a temporal meta-region of interest-a commonly used proxy of tau burden-assessing their association with cognitive scores and clinical progression. More than 80% of amyloid-beta positive participants across diagnostic groups followed typical Braak staging, both cross-sectionally and longitudinally. Within each Braak stage, however, the pattern of abnormality demonstrated significant heterogeneity such that the overlap of abnormal regions across participants averaged less than 50%, particularly in persons with mild cognitive impairment. Accumulation of tau progressed more rapidly among cognitively unimpaired and participants with mild cognitive impairment (1.2 newly abnormal regions per year) compared to participants with Alzheimer's disease dementia (less than 1 newly abnormal region per year). Comparing the association of tau pathology and cognitive performance our spatial extent index was superior to the temporal meta-region of interest for identifying associations with memory in cognitively unimpaired individuals and explained more variance for measures of executive function in patients with mild cognitive impairments and Alzheimer's disease dementia. Thus, while participants broadly followed Braak stages, significant individual regional heterogeneity of tau binding was observed at each clinical stage. Progression of the spatial extent of tau pathology appears to be fastest in cognitively unimpaired and persons with mild cognitive impairment. Exploring the spatial distribution of tau deposits throughout the entire brain may uncover further pathological variations and their correlation with cognitive impairments.

10.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38388425

RESUMEN

Elevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD (N = 172, 120 females, 52 males; mean age = 68.8 ± 5.4 years). MRI-based quantitative susceptibility maps were acquired to derive estimates of hippocampal iron deposition. The Mnemonic Similarity Task was used to measure pattern separation and pattern completion, two hippocampally mediated episodic memory processes. Greater hippocampal iron load was associated with lower pattern separation and higher pattern completion scores, both indicators of poorer episodic memory. Examination of iron levels within hippocampal subfields across its long axis revealed topographic specificity. Among the subfields and segments investigated here, iron deposition in the posterior hippocampal CA1 was the most robustly and negatively associated with the fidelity memory representations. This association remained after controlling for hippocampal volume and was observed in the context of normal performance on standard neuropsychological memory measures. These findings reveal that the impact of iron load on episodic memory performance is not uniform across the hippocampus. Both iron deposition levels as well as its spatial distribution, must be taken into account when examining the relationship between hippocampal iron and episodic memory in older adults at elevated risk for AD.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Hierro , Imagen por Resonancia Magnética , Memoria Episódica , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Anciano , Hipocampo/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hierro/metabolismo , Persona de Mediana Edad
11.
Neurobiol Aging ; 134: 146-159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091752

RESUMEN

The relationship between midlife physical activity (PA), and cognition and brain health in later life is poorly understood with conflicting results from previous research. Investigating the contribution of midlife PA to later-life cognition and brain health in high-risk populations will propel the development of health guidance for those most in need. The current study examined the association between midlife PA engagement and later-life cognition, grey matter characteristics and resting-state functional connectivity in older individuals at high-risk for Alzheimer's disease. The association between midlife PA and later-life cognitive function was not significant but was moderated by later-life PA. Meanwhile, greater midlife moderate-to-vigorous PA was associated with greater grey matter surface area in the left middle frontal gyrus. Moreover, greater midlife total PA was associated with diminished functional connectivity between bilateral middle frontal gyri and middle cingulum, supplementary motor areas, and greater functional connectivity between bilateral hippocampi and right cerebellum, Crus II. These results indicate the potentially independent contribution of midlife PA to later-life brain health.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Ejercicio Físico , Cognición , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/prevención & control , Sustancia Gris , Imagen por Resonancia Magnética
12.
Neuroimage Clin ; 40: 103532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37931333

RESUMEN

Episodic memory decline is an early symptom of Alzheimer's disease (AD) - a neurodegenerative disease that has a higher prevalence rate in older females compared to older males. However, little is known about why these sex differences in prevalence rate exist. In the current longitudinal task fMRI study, we explored whether there were sex differences in the patterns of memory decline and brain activity during object-location (spatial context) encoding and retrieval in a large sample of cognitively unimpaired older adults from the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program who are at heightened risk of developing AD due to having a family history (+FH) of the disease. The goal of the study was to gain insight into whether there are sex differences in the neural correlates of episodic memory decline, which may advance knowledge about sex-specific patterns in the natural progression to AD. Our results indicate that +FH females performed better than +FH males at both baseline and follow-up on neuropsychological and task fMRI measures of episodic memory. Moreover, multivariate data-driven task fMRI analysis identified generalized patterns of longitudinal decline in medial temporal lobe activity that was paralleled by longitudinal increases in lateral prefrontal cortex, caudate and midline cortical activity during successful episodic retrieval and novelty detection in +FH males, but not females. Post-hoc analyses indicated that higher education had a stronger effect on +FH females neuropsychological scores compared to +FH males. We conclude that higher educational attainment may have a greater neuroprotective effect in older +FH females compared to +FH males.


Asunto(s)
Enfermedad de Alzheimer , Memoria Episódica , Enfermedades Neurodegenerativas , Humanos , Masculino , Femenino , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Caracteres Sexuales , Cognición , Lóbulo Temporal , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
13.
Brain ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37992295

RESUMEN

Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signaling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein (IGFBP) in the cerebrospinal fluid (CSF) - IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD biomarkers and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aß) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aß42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the QFP cohort, a unique population isolate from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and was negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 (CSF Aß(+)/t-tau(+)). In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (HR = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049), however IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2, in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aß(+)/t-tau(+) individuals and those with a greater risk of AD conversion.

14.
Brain Commun ; 5(6): fcad279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953840

RESUMEN

White matter hyperintensities are radiological abnormalities reflecting cerebrovascular dysfunction detectable using MRI. White matter hyperintensities are often present in individuals at the later stages of the lifespan and in prodromal stages in the Alzheimer's disease spectrum. Tissue alterations underlying white matter hyperintensities may include demyelination, inflammation and oedema, but these are highly variable by neuroanatomical location and between individuals. There is a crucial need to characterize these white matter hyperintensity tissue alterations in vivo to improve prognosis and, potentially, treatment outcomes. How different MRI measure(s) of tissue microstructure capture clinically-relevant white matter hyperintensity tissue damage is currently unknown. Here, we compared six MRI signal measures sampled within white matter hyperintensities and their associations with multiple clinically-relevant outcomes, consisting of global and cortical brain morphometry, cognitive function, diagnostic and demographic differences and cardiovascular risk factors. We used cross-sectional data from 118 participants: healthy controls (n = 30), individuals at high risk for Alzheimer's disease due to familial history (n = 47), mild cognitive impairment (n = 32) and clinical Alzheimer's disease dementia (n = 9). We sampled the median signal within white matter hyperintensities on weighted MRI images [T1-weighted (T1w), T2-weighted (T2w), T1w/T2w ratio, fluid-attenuated inversion recovery (FLAIR)] as well as the relaxation times from quantitative T1 (qT1) and T2* (qT2*) images. qT2* and fluid-attenuated inversion recovery signals within white matter hyperintensities displayed different age- and disease-related trends compared to normal-appearing white matter signals, suggesting sensitivity to white matter hyperintensity-specific tissue deterioration. Further, white matter hyperintensity qT2*, particularly in periventricular and occipital white matter regions, was consistently associated with all types of clinically-relevant outcomes in both univariate and multivariate analyses and across two parcellation schemes. qT1 and fluid-attenuated inversion recovery measures showed consistent clinical relationships in multivariate but not univariate analyses, while T1w, T2w and T1w/T2w ratio measures were not consistently associated with clinical variables. We observed that the qT2* signal was sensitive to clinically-relevant microstructural tissue alterations specific to white matter hyperintensities. Our results suggest that combining volumetric and signal measures of white matter hyperintensity should be considered to fully characterize the severity of white matter hyperintensities in vivo. These findings may have implications in determining the reversibility of white matter hyperintensities and the potential efficacy of cardio- and cerebrovascular treatments.

15.
Netw Neurosci ; 7(3): 1206-1227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781144

RESUMEN

Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.

16.
Biol Psychiatry ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37689129

RESUMEN

Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.

17.
Nat Med ; 29(7): 1821-1831, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414898

RESUMEN

Chronic pain is a complex condition influenced by a combination of biological, psychological and social factors. Using data from the UK Biobank (n = 493,211), we showed that pain spreads from proximal to distal sites and developed a biopsychosocial model that predicted the number of coexisting pain sites. This data-driven model was used to identify a risk score that classified various chronic pain conditions (area under the curve (AUC) 0.70-0.88) and pain-related medical conditions (AUC 0.67-0.86). In longitudinal analyses, the risk score predicted the development of widespread chronic pain, the spreading of chronic pain across body sites and high-impact pain about 9 years later (AUC 0.68-0.78). Key risk factors included sleeplessness, feeling 'fed-up', tiredness, stressful life events and a body mass index >30. A simplified version of this score, named the risk of pain spreading, obtained similar predictive performance based on six simple questions with binarized answers. The risk of pain spreading was then validated in the Northern Finland Birth Cohort (n = 5,525) and the PREVENT-AD cohort (n = 178), obtaining comparable predictive performance. Our findings show that chronic pain conditions can be predicted from a common set of biopsychosocial factors, which can aid in tailoring research protocols, optimizing patient randomization in clinical trials and improving pain management.


Asunto(s)
Dolor Crónico , Humanos , Dolor Crónico/epidemiología , Pronóstico , Enfermedad Crónica , Factores de Riesgo , Manejo del Dolor/métodos
18.
medRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333413

RESUMEN

The spread of tau abnormality in sporadic Alzheimer's disease is believed typically to follow neuropathologically defined Braak staging. Recent in-vivo positron emission tomography (PET) evidence challenges this belief, however, as spreading patterns for tau appear heterogenous among individuals with varying clinical expression of Alzheimer's disease. We therefore sought better understanding of the spatial distribution of tau in the preclinical and clinical phases of sporadic Alzheimer's disease and its association with cognitive decline. Longitudinal tau-PET data (1,370 scans) from 832 participants (463 cognitively unimpaired, 277 with mild cognitive impairment (MCI) and 92 with Alzheimer's disease dementia) were obtained from the Alzheimer's Disease Neuroimaging Initiative. Among these, we defined thresholds of abnormal tau deposition in 70 brain regions from the Desikan atlas, and for each group of regions characteristic of Braak staging. We summed each scan's number of regions with abnormal tau deposition to form a spatial extent index. We then examined patterns of tau pathology cross-sectionally and longitudinally and assessed their heterogeneity. Finally, we compared our spatial extent index of tau uptake with a temporal meta region of interest-a commonly used proxy of tau burden-assessing their association with cognitive scores and clinical progression. More than 80% of amyloid-beta positive participants across diagnostic groups followed typical Braak staging, both cross-sectionally and longitudinally. Within each Braak stage, however, the pattern of abnormality demonstrated significant heterogeneity such that overlap of abnormal regions across participants averaged less than 50%. The annual rate of change in number of abnormal tau-PET regions was similar among individuals without cognitive impairment and those with Alzheimer's disease dementia. Spread of disease progressed more rapidly, however, among participants with MCI. The latter's change on our spatial extent measure amounted to 2.5 newly abnormal regions per year, as contrasted with 1 region/year among the other groups. Comparing the association of tau pathology and cognitive performance in MCI and Alzheimer's disease dementia, our spatial extent index was superior to the temporal meta-ROI for measures of executive function. Thus, while participants broadly followed Braak stages, significant individual regional heterogeneity of tau binding was observed at each clinical stage. Progression of spatial extent of tau pathology appears to be fastest in persons with MCI. Exploring the spatial distribution of tau deposits throughout the entire brain may uncover further pathological variations and their correlation with impairments in cognitive functions beyond memory.

19.
Alzheimers Dement ; 19(12): 5620-5631, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37294682

RESUMEN

INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aß)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aß and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aß42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aß-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E Îµ4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aß42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Proteína Ácida Fibrilar de la Glía , Plasma , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones , Proteínas tau
20.
Sci Rep ; 13(1): 7487, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160915

RESUMEN

Prior research has demonstrated the importance of a healthy lifestyle to protect brain health and diminish dementia risk in later life. While a multidomain lifestyle provides an ecological perspective to voluntary engagement, its association with brain health is still under-investigated. Therefore, understanding the neural mechanisms underlying multidomain lifestyle engagement, particularly in older adults at risk for Alzheimer's disease (AD), gives valuable insights into providing lifestyle advice and intervention for those in need. The current study included 139 healthy older adults with familial risk for AD from the Prevent-AD longitudinal aging cohort. Self-reported exercise engagement, cognitive activity engagement, healthy diet adherence, and social activity engagement were included to examine potential phenotypes of an individual's lifestyle adherence. Two adherence profiles were discovered using data-driven clustering methodology [i.e., Adherence to healthy lifestyle (AL) group and Non-adherence to healthy lifestyle group]. Resting-state functional connectivity matrices and grey matter brain features obtained from magnetic resonance imaging were used to classify the two groups using a support vector machine (SVM). The SVM classifier was 75% accurate in separating groups. The features that show consistently high importance to the classification model were functional connectivity mainly between nodes located in different prior-defined functional networks. Most nodes were located in the default mode network, dorsal attention network, and visual network. Our results provide preliminary evidence of neurobiological characteristics underlying multidomain healthy lifestyle choices.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Conducta Social , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA