Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(9): 304, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37593204

RESUMEN

The adulteration of plants and their materials used in herbal formulations poses a severe health concern. Hence, there is a need to establish a reliable, cost-effective, and robust molecular biomarker to distinguish among species and identify herbal plants and raw drugs from adulterants. The present study used suppressive subtractive hybridization and next-generation sequencing technology to identify novel DNA markers for Boerhavia diffusa L. and Tinospora cordifolia (Willd.) Miers. We identified two primer sets for B. diffusa and one for T. cordifolia. The DNA markers were validated in different accessions of B. diffusa and T. cordifolia and their common adulterants to determine the sensitivity and specificity of developed DNA markers. The designed DNA markers showed 100% sensitivity and specificity in detecting B. diffusa and T. cordifolia from their adulterants. The strategy described here can be extrapolated for developing DNA markers to authenticate other plant species. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03732-7.

2.
J Biomol Struct Dyn ; 41(21): 11930-11945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042962

RESUMEN

Tribulus terrestris L. (Gokshura) is a medicinal herb used for treating cardiac diseases and several other diseases. However, the active ingredients and the possible mechanism of action for treating cardiac diseases remain unclear. Hence, the study was designed to identify the active ingredients and to explore the potential mechanism of action of Tribulus terrestris L. for treating cardiac diseases by an integrated approach of metabolomics and network pharmacology. We performed HPLC-QTOF-MS/MS analysis to identify putative compounds and network pharmacology approach for predictive key targets and pathways. Using molecular docking and molecular dynamics simulation, we identified the active ingredients in Tribulus terrestris L. that can act as putative lead compounds to treat cardiac diseases. A total of 55 putative compounds were identified using methanolic extract of Tribulus terrestris L. using HPLC-QTOF-MS/MS analysis. Network pharmacology analysis predicted 32 human protein targets from 25 secondary metabolites, which have shown direct interaction with cardiac diseases. Based on the degrees of interaction, the hub targets such as TACR1, F2, F2R, ADRA1B, CHRM5, ADRA1A, ADRA1D, HTR2B, and AVPR1A were identified. In silico molecular docking and simulation resulted in the identification of active ingredients such as Kaempferol 3-rutinoside 7-glucuronide, Keioside, rutin, moupinamide, aurantiamide, quercetin-3-o-α-rhamnoside, tribuloside, and 3'',6''- Di-O-p-coumaroyltrifolin against hub protein targets. Hence, these compounds could be potential lead compounds for treating cardiac diseases. A further assessment of its efficacy can be made based on in vivo and in vitro studies for better understanding and strong assertion.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Medicamentos Herbarios Chinos , Cardiopatías , Tribulus , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Farmacología en Red
3.
3 Biotech ; 12(11): 287, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36164436

RESUMEN

The outbreak of COVID-19 caused by the coronavirus (SARS-CoV-2) prompted number of computational and laboratory efforts to discover molecules against the virus entry or replication. Simultaneously, due to the availability of clinical information, drug-repurposing efforts led to the discovery of 2-deoxy-d-glucose (2-DG) for treating COVID-19 infection. 2-DG critically accumulates in the infected cells to prevent energy production and viral replication. As there is no clarity on the impact of genetic variations on the efficacy and adverse effects of 2-DG in treating COVID-19 using in silico approaches, we attempted to extract the genes associated with the 2-DG pathway using the Comparative Toxicogenomics Database. The interaction between selected genes was assessed using ClueGO, to identify the susceptible gene loci for SARS-CoV infections. Further, SNPs that were residing in the distinct genomic regions were retrieved from the Ensembl genome browser and characterized. A total of 80 SNPs were retrieved using diverse bioinformatics resources after assessing their (a) detrimental influence on the protein stability using Swiss-model, (b) miRNA regulation employing miRNASNP3, PolymiRTS, MirSNP databases, (c) binding of transcription factors by SNP2TFBS, SNPInspector, and (d) enhancers regulation using EnhancerDB and HaploReg reported A2M rs201769751, PARP1 rs193238922 destabilizes protein, six polymorphisms of XIAP effecting microRNA binding sites, EGFR rs712829 generates 15 TFBS, BECN1 rs60221525, CASP9 rs4645980, SLC2A2 rs5393 impairs 14 TFBS, STK11 rs3795063 altered 19 regulatory motifs. These data may provide the relationship between genetic variations and drug effects of 2-DG which may further assist in assigning the right individuals to benefit from the treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03363-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...