Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 925: 171564, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460685

RESUMEN

Tillage intensity significantly influences the heterogeneous distribution and dynamic changes of soil microorganisms, consequently shaping spatio-temporal patterns of SOC decomposition. However, little is known about the microbial mechanisms by which tillage intensity regulates the priming effect (PE) dynamics in heterogeneous spatial environments such as aggregates. Herein, a microcosm experiment was established by adding 13C-labeled straw residue to three distinct aggregate-size classes (i.e., mega-, macro-, and micro-aggregates) from two long-term contrasting tillage histories (no-till [NT] and conventional plow tillage [CT]) for 160 days to observe the spatio-temporal variations in PE. Metagenomic sequencing and Fourier transform mid-infrared techniques were used to assess the relative importance of C-degrading functional genes, microbial community succession, and SOC chemical composition in the aggregate-associated PE dynamics during straw decomposition. Spatially, straw addition induced a positive PE for all aggregates, with stronger PE occurring in larger aggregates, especially in CT soil compared to NT soil. Larger aggregates have more unique microbial communities enriched in genes for simple C degradation (e.g., E5.1.3.6, E2.4.1.7, pmm-pgm, and KduD in Nitrosospeera and Burkholderia), contributing to the higher short-term PE; however, CT soils harbored more genes for complex C degradation (e.g., TSTA3, fcl, pmm-pgm, and K06871 in Gammaproteobacteria and Phycicoccus), supporting a stronger long-term PE. Temporally, soil aggregates played a significant role in the early-stage PEs (i.e., < 59 days after residue addition) through co-metabolism and nitrogen (N) mining, as evidenced by the increased microbial biomass C and dissolved organic C (DOC) and reduced inorganic N with increasing aggregate-size class. At a later stage, however, the legacy effect of tillage histories controlled the PEs via microbial stoichiometry decomposition, as suggested by the higher DOC-to-inorganic N and DOC-to-available P stoichiometries in CT than NT. Our study underscores the importance of incorporating both spatial and temporal microbial dynamics for a comprehensive understanding of the mechanisms underlying SOC priming, especially in the context of long-term contrasting tillage practices.


Asunto(s)
Carbono , Microbiota , Suelo/química , Microbiología del Suelo , Biomasa , Agricultura/métodos
2.
Ecology ; 103(11): e3790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35718753

RESUMEN

The microbial priming effect-the decomposition of soil organic carbon (SOC) induced by plant inputs-has long been considered an important driver of SOC dynamics, yet we have limited understanding about the direction, intensity, and drivers of priming across ecosystem types and biomes. This gap hinders our ability to predict how shifts in litter inputs under global change can affect climate feedbacks. Here, we synthesized 18,919 observations of CO2 effluxes in 802 soils across the globe to test the relative effects (i.e., log response ratio [RR]) of litter additions on native SOC decomposition and identified the dominant environmental drivers in natural ecosystems and agricultural lands. Globally, litter additions enhanced native SOC decomposition (RR = 0.35, 95% CI: 0.32-0.38), with greater priming effects occurring with decreasing latitude and more in agricultural soils (RR = 0.43) than in uncultivated soils (RR = 0.28). In natural ecosystems, soil pH and microbial community composition (e.g., bacteria: fungi ratio) were the best predictors of priming, with greater effects occurring in acidic, bacteria-dominated sandy soils. In contrast, the substrate properties of plant litter and soils were the most important drivers of priming in agricultural systems since soils with high C:N ratios and those receiving large inputs of low-quality litter had the highest priming effects. Collectively, our results suggest that, though different factors may control priming effects, the ubiquitous nature of priming means that alterations of litter quality and quantity owing to global changes will likely have consequences for global C cycling and climate forcing.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono , Ciclo del Carbono , Microbiología del Suelo , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...