Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 361(6405): 920-923, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30166491

RESUMEN

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático
2.
Glob Chang Biol ; 24(7): 2939-2951, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29700905

RESUMEN

African ecosystems are at great risk. Despite their ecological and economic importance, long-standing ideas about African forest ecology and biogeography, such as the timing of changes in forest extent and the importance of disturbance, have been unable to be tested due to a lack of sufficiently long records. Here, we present the longest continuous terrestrial record of late Quaternary vegetation from southern Africa collected to date from a drill core from Lake Malawi covering the last ~600,000 years. Pollen analysis permits us to investigate changes in vegetation structure and composition over multiple climatic transitions. We observe nine phases of forest expansion and collapse related to regional hydroclimate change. The development of desert, steppe and grassland vegetation during arid periods is likely dynamically linked to thresholds in regional hydrology associated with lake level and moisture recycling. Species composition of these dryland ecosystems varied greatly and is unlike the vegetation found at Malawi today, with assemblages suggesting strong Somali-Masai affinities. Furthermore, nearly all semiarid assemblages contain low forest taxa abundances, suggesting that moist lowland gallery forests formed refugia along waterways during arid times. When the region was wet, forests were species-rich and very high afromontane tree abundances suggest frequent widespread lowland colonization by modern high elevation trees. Furthermore, species composition varied little amongst forest phases until ~80 ka when disturbance tolerant tree taxa characteristic of the modern vegetation increased in abundance. The waxing and waning of forests has important implications for understanding the processes that control modern tropical vegetation biogeography as well as the environments of early humans across Africa. Finally, this work highlights the resilience of montane forests during previous warm intervals, which is relevant for future climate change; however, we point to a fundamental shift in disturbance regimes which are crucial for the structure and composition of modern East African landscapes.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , África , Evolución Biológica , Humanos
3.
PLoS One ; 9(11): e112855, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25406090

RESUMEN

Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.


Asunto(s)
Silicatos de Aluminio/química , Cambio Climático/historia , Sedimentos Geológicos/química , Lagos , Fenómenos Fisiológicos de las Plantas , Polen/citología , Arcilla , Geografía , Historia Antigua , Caolín/análisis , Malaui , Tamaño de la Partícula , Lluvia , Silicatos/análisis , Especificidad de la Especie , Clima Tropical , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...