Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Methods Mol Biol ; 2831: 145-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134849

RESUMEN

Neurons contain three compartments, the soma, long axon, and dendrites, which have distinct energetic and biochemical requirements. Mitochondria feature in all compartments and regulate neuronal activity and survival, including energy generation and calcium buffering alongside other roles including proapoptotic signaling and steroid synthesis. Their dynamicity allows them to undergo constant fusion and fission events in response to the changing energy and biochemical requirements. These events, termed mitochondrial dynamics, impact their morphology and a variety of three-dimensional (3D) morphologies exist within the neuronal mitochondrial network. Distortions in the morphological profile alongside mitochondrial dysfunction may begin in the neuronal soma in ageing and common neurodegenerative disorders. However, 3D morphology cannot be comprehensively examined in flat, two-dimensional (2D) images. This highlights a need to segment mitochondria within volume data to provide a representative snapshot of the processes underpinning mitochondrial dynamics and mitophagy within healthy and diseased neurons. The advent of automated high-resolution volumetric imaging methods such as Serial Block Face Scanning Electron Microscopy (SBF-SEM) as well as the range of image software packages allow this to be performed.We describe and evaluate a method for randomly sampling mitochondria and manually segmenting their whole morphologies within randomly generated regions of interest of the neuronal soma from SBF-SEM image stacks. These 3D reconstructions can then be used to generate quantitative data about mitochondrial and cellular morphologies. We further describe the use of a macro that automatically dissects the soma and localizes 3D mitochondria into the subregions created.


Asunto(s)
Imagenología Tridimensional , Mitocondrias , Dinámicas Mitocondriales , Neuronas , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/citología , Imagenología Tridimensional/métodos , Animales , Microscopía Electrónica de Rastreo/métodos , Programas Informáticos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica de Volumen
2.
Brain ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045638

RESUMEN

Late-onset Pompe Disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction due to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage - a classic manifestation of the disease - has been extensively studied by analysing the whole muscle tissue; however, little, if any, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single nuclei RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age and gender matched healthy controls. We matched these changes with histology findings using GeoMx Spatial Transcriptomics to compare the transcriptome of control myofibers from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibers of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibers and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibers, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes, and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. The upregulation of the genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibers. Notably, enzyme replacement therapy - the only available therapy for the disease - showed a tendency to restore metabolism dysregulation, particularly within slow fibers. A combination of single nuclei RNA sequencing and spatial transcriptomics revealed the landscape of normal and the diseased muscle, and highlighted the early abnormalities associated with the disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.

3.
Sci Rep ; 14(1): 13789, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877095

RESUMEN

Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.


Asunto(s)
ADN Mitocondrial , Heteroplasmia , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Humanos , ADN Mitocondrial/genética , Heteroplasmia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología
4.
Biochem J ; 481(11): 683-715, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38804971

RESUMEN

Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Eliminación de Secuencia , Genoma Mitocondrial , Mitocondrias/genética , Mitocondrias/metabolismo , Reparación del ADN
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167131, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38521420

RESUMEN

Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms. To understand the contribution of mito-nuclear signalling to the spread of mitochondrial dysfunction, we use imaging mass cytometry. We characterise the levels of mitochondrial Oxidative Phosphorylation proteins alongside a mitochondrial mass marker, in a cohort of patients with mtDNA maintenance disorders. Our expanded panel included protein markers of key signalling pathways, allowing us to investigate cellular responses to different combinations of oxidative phosphorylation dysfunction and ragged red fibres. We find combined Complex I and IV deficiency to be most common. Interestingly, in fibres deficient for one or more complexes, the remaining complexes are often upregulated beyond the increase of mitochondrial mass typically observed in ragged red fibres. We further find that oxidative phosphorylation deficient fibres exhibit an increase in the abundance of proteins involved in proteostasis, e.g. HSP60 and LONP1, and regulation of mitochondrial metabolism (including oxidative phosphorylation and proteolysis, e.g. PHB1). Our analysis suggests that the cellular response to mitochondrial dysfunction changes depending on the combination of deficient oxidative phosphorylation complexes in each fibre.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Fosforilación Oxidativa , Prohibitinas , Humanos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/genética , Femenino , Adulto , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Transducción de Señal , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
6.
Sci Rep ; 14(1): 3365, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336890

RESUMEN

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/patología , Atrofia Muscular/metabolismo , Músculos/metabolismo , Colágeno/metabolismo , Progresión de la Enfermedad , Citometría de Imagen , Músculo Esquelético/metabolismo
7.
Biochem J ; 480(21): 1767-1789, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37965929

RESUMEN

Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.


Asunto(s)
Miopatías Mitocondriales , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Mitocondrias/metabolismo , Recambio Mitocondrial , Biología
8.
J Neuromuscul Dis ; 10(6): 1111-1126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638448

RESUMEN

BACKGROUND: Myotonic dystrophy type 1 (DM1) is a dominant autosomal neuromuscular disorder caused by the inheritance of a CTG triplet repeat expansion in the Dystrophia Myotonica Protein Kinase (DMPK) gene. At present, no cure currently exists for DM1 disease. OBJECTIVE: This study investigates the effects of 12-week resistance exercise training on mitochondrial oxidative phosphorylation in skeletal muscle in a cohort of DM1 patients (n = 11, men) in comparison to control muscle with normal oxidative phosphorylation. METHODS: Immunofluorescence was used to assess protein levels of key respiratory chain subunits of complex I (CI) and complex IV (CIV), and markers of mitochondrial mass and cell membrane in individual myofibres sampled from muscle biopsies. Using control's skeletal muscle fibers population, we classified each patient's fibers as having normal, low or high levels of CI and CIV and compared the proportions of fibers before and after exercise training. The significance of changes observed between pre- and post-exercise within patients was estimated using a permutation test. RESULTS: At baseline, DM1 patients present with significantly decreased mitochondrial mass, and isolated or combined CI and CIV deficiency. After resistance exercise training, in most patients a significant increase in mitochondrial mass was observed, and all patients showed a significant increase in CI and/or CIV protein levels. Moreover, improvements in mitochondrial mass were correlated with the one-repetition maximum strength evaluation. CONCLUSIONS: Remarkably, 12-week resistance exercise training is sufficient to partially rescue mitochondrial dysfunction in DM1 patients, suggesting that the response to exercise is in part be due to changes in mitochondria.


Asunto(s)
Distrofia Miotónica , Entrenamiento de Fuerza , Masculino , Humanos , Distrofia Miotónica/genética , Músculo Esquelético/patología , Ejercicio Físico/fisiología , Mitocondrias/metabolismo
9.
NPJ Parkinsons Dis ; 9(1): 120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553379

RESUMEN

Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.

10.
Methods Mol Biol ; 2615: 443-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807808

RESUMEN

Mitochondrial DNA (mtDNA) deletions underpin mitochondrial dysfunction in human tissues in aging and disease. The multicopy nature of the mitochondrial genome means these mtDNA deletions can occur in varying mutation loads. At low levels, these deletions have no impact, but once the proportion of molecules harbouring a deletion exceeds a threshold level, then dysfunction occurs. The location of the breakpoints and the size of the deletion impact upon the mutation threshold required to cause deficiency of an oxidative phosphorylation complex, and this varies for each of the different complexes. Furthermore, mutation load and deletion species can vary between adjacent cells in a tissue, with a mosaic pattern of mitochondrial dysfunction observed. As such, it is often important for understanding human aging and disease to be able to characterise the mutation load, breakpoints and size of deletion(s) from a single human cell. Here, we detail protocols for laser micro-dissection and single cell lysis from tissues, and the subsequent analysis of deletion size, breakpoints and mutation load using long-range PCR, mtDNA sequencing and real-time PCR, respectively.


Asunto(s)
Envejecimiento , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Envejecimiento/genética , Mitocondrias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de la Célula Individual , Eliminación de Secuencia
12.
Front Neurol ; 13: 937885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212643

RESUMEN

Mutations in DNM1L (DRP1), which encode a key player of mitochondrial and peroxisomal fission, have been reported in patients with the variable phenotypic spectrum, ranging from non-syndromic optic atrophy to lethal infantile encephalopathy. Here, we report a case of an adult female patient presenting with a complex neurological phenotype that associates axonal sensory neuropathy, spasticity, optic atrophy, dysarthria, dysphasia, dystonia, and ataxia, worsening with aging. Whole-exome sequencing revealed a heterozygous de novo variant in the GTPase domain of DNM1L [NM_001278464.1: c.176C>A p.(Thr59Asn)] making her the oldest patient suffering from encephalopathy due to defective mitochondrial and peroxisomal fission-1. In silico analysis suggested a protein destabilization effect of the variant Thr59Asn. Unexpectedly, Western blotting disclosed profound decrease of DNM1L expression, probably related to the degradation of DNM1L complexes. A detailed description of mitochondrial and peroxisomal anomalies in transmission electron and 3D fluorescence microscopy studies confirmed the exceptional phenotype of this patient.

13.
Trials ; 23(1): 789, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127727

RESUMEN

BACKGROUND: Mitochondrial disease is a heterogenous group of rare, complex neurometabolic disorders. Despite their individual rarity, collectively mitochondrial diseases represent the most common cause of inherited metabolic disorders in the UK; they affect 1 in every 4300 individuals, up to 15,000 adults (and a similar number of children) in the UK. Mitochondrial disease manifests multisystem and isolated organ involvement, commonly affecting those tissues with high energy demands, such as skeletal muscle. Myopathy manifesting as fatigue, muscle weakness and exercise intolerance is common and debilitating in patients with mitochondrial disease. Currently, there are no effective licensed treatments and consequently, there is an urgent clinical need to find an effective drug therapy. AIM: To investigate the efficacy of 12-week treatment with acipimox on the adenosine triphosphate (ATP) content of skeletal muscle in patients with mitochondrial disease and myopathy. METHODS: AIMM is a single-centre, double blind, placebo-controlled, adaptive designed trial, evaluating the efficacy of 12 weeks' administration of acipimox on skeletal muscle ATP content in patients with mitochondrial myopathy. Eligible patients will receive the trial investigational medicinal product (IMP), either acipimox or matched placebo. Participants will also be prescribed low dose aspirin as a non-investigational medical product (nIMP) in order to protect the blinding of the treatment assignment. Eighty to 120 participants will be recruited as required, with an interim analysis for sample size re-estimation and futility assessment being undertaken once the primary outcome for 50 participants has been obtained. Randomisation will be on a 1:1 basis, stratified by Fatigue Impact Scale (FIS) (dichotomised as < 40, ≥ 40). Participants will take part in the trial for up to 20 weeks, from screening visits through to follow-up at 16 weeks post randomisation. The primary outcome of change in ATP content in skeletal muscle and secondary outcomes relating to quality of life, perceived fatigue, disease burden, limb function, balance and walking, skeletal muscle analysis and symptom-limited cardiopulmonary fitness (optional) will be assessed between baseline and 12 weeks. DISCUSSION: The AIMM trial will investigate the effect of acipimox on modulating muscle ATP content and whether it can be repurposed as a new treatment for mitochondrial disease with myopathy. TRIAL REGISTRATION: EudraCT2018-002721-29 . Registered on 24 December 2018, ISRCTN 12895613. Registered on 03 January 2019, https://www.isrctn.com/search?q=aimm.


Asunto(s)
Miopatías Mitocondriales , Enfermedades Musculares , Adulto , Niño , Humanos , Adenosina Trifosfato , Aspirina/uso terapéutico , Fatiga , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/tratamiento farmacológico , Pirazinas , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
AIDS ; 36(14): 1927-1934, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35848592

RESUMEN

OBJECTIVE: To quantify mitochondrial function in skeletal muscle of people treated with contemporary antiretroviral therapy. DESIGN: Cross-sectional observational study. METHODS: Quantitative multiplex immunofluorescence was performed to determine mitochondrial mass and respiratory chain complex abundance in individual myofibres from tibialis anterior biopsies. Individual myofibres were captured by laser microdissection and mitochondrial DNA (mtDNA) content and large-scale deletions were measured by real-time PCR. RESULTS: Forty-five antiretroviral therapy (ART)-treated people with HIV (PWH, mean age 58 years, mean duration of ART 125 months) were compared with 15 HIV negative age-matched controls. Mitochondrial complex I (CI) deficiency was observed at higher proportional levels in PWH than negative controls ( P = 0.008). Myofibre mitochondrial mass did not differ by HIV status. No ART class was significantly associated with mitochondrial deficiency, including prior exposure to historical NRTIs (nucleoside analogue reverse transcriptase inhibitors) associated with systemic mitochondrial toxicity. To exclude an effect of untreated HIV, we also studied skeletal muscle from 13 ART-naive PWH (mean age 37). These showed negligible CI defects, as well as comparable myofibre mitochondrial mass to ART-treated PWH. Most CI-deficient myofibres contained mtDNA deletions. No mtDNA depletion was detected. CONCLUSION: Here, we show that PWH treated with contemporary ART have mitochondrial dysfunction in skeletal muscle, exceeding that expected due to age alone. Surprisingly, this was not mediated by prior exposure to mitochondrially toxic NRTIs, suggesting novel mechanisms of mitochondrial dysfunction in contemporary ART-treated PWH. These findings are relevant for better understanding successful ageing in PWH.


Asunto(s)
Infecciones por VIH , Humanos , Persona de Mediana Edad , Adulto , Infecciones por VIH/complicaciones , Estudios Transversales , Análisis de la Célula Individual , ADN Mitocondrial , Mitocondrias , Músculo Esquelético
15.
J Vet Diagn Invest ; 34(5): 874-878, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879873

RESUMEN

Rapid and reliable identification of the hemagglutinin (HA) and neuraminidase (NA) genetic clades of an influenza A virus (IAV) sequence from swine can inform control measures and multivalent vaccine composition. Current approaches to genetically characterize HA or NA sequences are based on nucleotide similarity or phylogenetic analyses. Public databases exist to acquire IAV genetic sequences for comparison, but personnel at the diagnostic or production level have difficulty in adequately updating and maintaining relevant sequence datasets for IAV in swine. Further, phylogenetic analyses are time intensive, and inference drawn from these methods is impacted by input sequence data and associated metadata. We describe here the use of the IAV multisequence identity tool as an integrated public webpage located on the Iowa State University Veterinary Diagnostic Laboratory (ISU-VDL) FLUture website: https://influenza.cvm.iastate.edu/. The multisequence identity tool uses sequence data derived from IAV-positive cases sequenced at the ISU-VDL, employs a BLAST algorithm that identifies sequences that are genetically similar to submitted query sequences, and presents a tabulation and visualization of the most genetically similar IAV sequence and associated metadata from the FLUture database. Our tool removes bioinformatic barriers and allows clients, veterinarians, and researchers to rapidly classify and identify IAV sequences similar to their own sequences to augment interpretation of results.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Hemaglutininas/genética , Humanos , Virus de la Influenza A/genética , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología , Estados Unidos/epidemiología
16.
mSphere ; 7(3): e0099421, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35766502

RESUMEN

Defining factors that influence spatial and temporal patterns of influenza A virus (IAV) is essential to inform vaccine strain selection and strategies to reduce the spread of potentially zoonotic swine-origin IAV. The relative frequency of detection of the H3 phylogenetic clade 1990.4.a (colloquially known as C-IVA) in U.S. swine declined to 7% in 2017 but increased to 32% in 2019. We conducted phylogenetic and phenotypic analyses to determine putative mechanisms associated with increased detection. We created an implementation of Nextstrain to visualize the emergence, spatial spread, and genetic evolution of H3 IAV in swine, identifying two C-IVA clades that emerged in 2017 and cocirculated in multiple U.S. states. Phylodynamic analysis of the hemagglutinin (HA) gene documented low relative genetic diversity from 2017 to 2019, suggesting clonal expansion. The major H3 C-IVA clade contained an N156H amino acid substitution, but hemagglutination inhibition (HI) assays demonstrated no significant antigenic drift. The minor HA clade was paired with the neuraminidase (NA) clade N2-2002B prior to 2016 but acquired and maintained an N2-2002A in 2016, resulting in a loss of antigenic cross-reactivity between N2-2002B- and -2002A-containing H3N2 strains. The major C-IVA clade viruses acquired a nucleoprotein (NP) of the H1N1pdm09 lineage through reassortment in the replacement of the North American swine-lineage NP. Instead of genetic or antigenic diversity within the C-IVA HA, our data suggest that population immunity to H3 2010.1 along with the antigenic diversity of the NA and the acquisition of the H1N1pdm09 NP gene likely explain the reemergence and transmission of C-IVA H3N2 in swine. IMPORTANCE Genetically distinct clades of influenza A virus (IAV) in swine undermine efforts to control the disease. Swine producers commonly use vaccines, and vaccine strains are selected by identifying the most common hemagglutinin (HA) gene from viruses detected in a farm or a region. In 2019, we identified an increase in the detection frequency of an H3 phylogenetic clade, C-IVA, which was previously circulating at much lower levels in U.S. swine. Our study identified genetic and antigenic factors contributing to its resurgence by linking comprehensive phylodynamic analyses with empirical wet-lab experiments and visualized these evolutionary analyses in a Nextstrain implementation. The contemporary C-IVA HA genes did not demonstrate an increase in genetic diversity or significant antigenic changes. N2 genes did demonstrate antigenic diversity, and the expanding C-IVA clade acquired a nucleoprotein (NP) gene segment via reassortment. Virus phenotype and vaccination targeting prior dominant HA clades likely contributed to the clade's success.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Hemaglutininas/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Neuraminidasa/genética , Nucleoproteínas/genética , Filogenia , Porcinos
17.
Sci Rep ; 12(1): 6660, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459777

RESUMEN

Advances in multiplex immunofluorescence (mIF) and digital image analysis has enabled simultaneous assessment of protein defects in electron transport chain components. However, current manual methodology is time consuming and labour intensive. Therefore, we developed an automated high-throughput mIF workflow for quantitative single-cell level assessment of formalin fixed paraffin embedded tissue (FFPE), leveraging tyramide signal amplification on a Ventana Ultra platform coupled with automated multispectral imaging on a Vectra 3 platform. Utilising this protocol, we assessed the mitochondrial oxidative phosphorylation (OXPHOS) protein alterations in a cohort of benign and malignant prostate samples. Mitochondrial OXPHOS plays a critical role in cell metabolism, and OXPHOS perturbation is implicated in carcinogenesis. Marked inter-patient, intra-patient and spatial cellular heterogeneity in OXPHOS protein abundance was observed. We noted frequent Complex IV loss in benign prostate tissue and Complex I loss in age matched prostate cancer tissues. Malignant regions within prostate cancer samples more frequently contained cells with low Complex I & IV and high mitochondrial mass in comparison to benign-adjacent regions. This methodology can now be applied more widely to study the frequency and distribution of OXPHOS alterations in formalin-fixed tissues, and their impact on long-term clinical outcomes.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Próstata , Neoplasias de la Próstata , Complejo IV de Transporte de Electrones , Técnica del Anticuerpo Fluorescente/métodos , Formaldehído , Humanos , Masculino , Fosforilación Oxidativa , Adhesión en Parafina , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Fijación del Tejido
18.
Anal Bioanal Chem ; 414(18): 5483-5492, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35233697

RESUMEN

Intracellular heterogeneity contributes significantly to cellular physiology and, in a number of debilitating diseases, cellular pathophysiology. This is greatly influenced by distinct organelle populations and to understand the aetiology of disease, it is important to have tools able to isolate and differentially analyse organelles from precise location within tissues. Here, we report the development of a subcellular biopsy technology that facilitates the isolation of organelles, such as mitochondria, from human tissue. We compared the subcellular biopsy technology to laser capture microdissection (LCM) that is the state-of-the-art technique for the isolation of cells from their surrounding tissues. We demonstrate an operational limit of  >20 µm for LCM and then, for the first time in human tissue, show that subcellular biopsy can be used to isolate mitochondria beyond this limit.


Asunto(s)
Genómica , Biopsia , Humanos , Captura por Microdisección con Láser/métodos
19.
mSphere ; 7(1): e0080921, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019669

RESUMEN

In 2017, the Iowa State University Veterinary Diagnostic Laboratory detected a reverse-zoonotic transmission of a human seasonal H3 influenza A virus into swine (IAV-S) in Oklahoma. Pairwise comparison between the recently characterized human seasonal H3 IAV-S (H3.2010.2) hemagglutinin (HA) sequences detected in swine and the most similar 2016-2017 human seasonal H3 revealed 99.9% nucleotide identity. To elucidate the origin of H3.2010.2 IAV-S, 45 HA and 27 neuraminidase (NA) sequences from 2017 to 2020 as well as 11 whole-genome sequences (WGS) were genetically characterized. Time to most recent common human ancestor was estimated between August and September 2016. The N2 NA was of human origin in all but one strain from diagnostic submissions with NA sequences, and the internal gene segments from WGS consisted of matrix genes originating from the 2009 pandemic H1N1 and another 5 internal genes of triple reassortant swine origin (TTTTPT). Pigs experimentally infected with H3.2010.2 demonstrated efficient nasal shedding and replication in the lungs, mild pneumonia, and minimal microscopic lung lesions and transmitted the virus to indirect contact swine. Antigenically, H3.2010.2 viruses were closer to a human seasonal vaccine strain, A/Hong Kong/4801/2014, than to the H3.2010.1 human seasonal H3 viruses detected in swine in 2012. This was the second sustained transmission of a human seasonal IAV into swine from the 2010 decade after H3.2010.1. Monitoring the spillover and detection of novel IAV from humans to swine may help vaccine antigen selection and could impact pandemic preparedness. IMPORTANCE H3.2010.2 is a new phylogenetic clade of H3N2 circulating in swine that became established after the spillover of a human seasonal H3N2 from the 2016-2017 influenza season. The novel H3.2010.2 transmitted and adapted to the swine host and demonstrated reassortment with internal genes from strains endemic to pigs, but it maintained human-like HA and NA. It is genetically and antigenically distinct from the H3.2010.1 H3N2 introduced earlier in the 2010 decade. Human seasonal IAV spillovers into swine become established in the population through adaptation and sustained transmission and contribute to the genetic and antigenic diversity of IAV circulating in swine. Continued IAV surveillance is necessary to detect emergence of novel strains in swine and assist with vaccine antigen selection to improve the ability to prevent respiratory disease in swine as well as the risk of zoonotic transmission.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Estaciones del Año , Porcinos , Enfermedades de los Porcinos/virología , Vacunas
20.
J Virol ; 96(5): e0172521, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34985999

RESUMEN

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Enfermedades Respiratorias , Animales , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/normas , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Enfermedades Respiratorias/inmunología , Porcinos , Vacunas de Productos Inactivados/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...