Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 160(2-3): 111-124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38700726

RESUMEN

Accurate estimation of photosynthetic parameters is essential for understanding plant physiological limitations and responses to environmental factors from the leaf to the global scale. Gas exchange is a useful tool to measure responses of net CO2 assimilation (A) to internal CO2 concentration (Ci), a necessary step in estimating photosynthetic parameters including the maximum rate of carboxylation (Vcmax) and the electron transport rate (Jmax). However, species and environmental conditions of low stomatal conductance (gsw) reduce the signal-to-noise ratio of gas exchange, challenging estimations of Ci. Previous works showed that not considering cuticular conductance to water (gcw) can lead to significant errors in estimating Ci, because it has a different effect on total conductance to CO2 (gtc) than does gsw. Here we present a systematic assessment of the need for incorporating gcw into Ci estimates. In this study we modeled the effect of gcw and of instrumental noise and quantified these effects on photosynthetic parameters in the cases of four species with varying gsw and gcw, measured using steady-state and constant ramping techniques, like the rapid A/Ci response method. We show that not accounting for gcw quantitatively influences Ci and the resulting Vcmax and Jmax, particularly when gcw exceeds 7% of the total conductance to water. The influence of gcw was not limited to low gsw species, highlighting the importance of species-specific knowledge before assessing A/Ci curves. Furthermore, at low gsw instrumental noise can affect Ci estimation, but the effect of instrumental noise can be minimized using constant-ramping rather than steady-state techniques. By incorporating these considerations, more precise measurements and interpretations of photosynthetic parameters can be obtained in a broader range of species and environmental conditions.


Asunto(s)
Fotosíntesis , Estomas de Plantas , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Agua/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo
2.
Physiol Plant ; 176(3): e14304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686664

RESUMEN

Source-sink balance in plants determines carbon distribution, and altering it can impact carbon fixation, transport, and allocation. We aimed to investigate the effect of altered source-sink ratios on carbon fixation, transport, and distribution in 'Valencia' sweet orange (Citrus x sinensis) by various defoliation treatments (0%, 33%, 66%, and 83% leaf removal). Gas exchange parameters were measured on 0 and 10 days after defoliation using A/Ci response curves, and leaf export was measured two days after defoliation using radioisotope tracer techniques. Greater defoliation increased the maximum rate of carboxylation (Vcmax), electron transport rate (J1200), and triose-phosphate utilization rate (TPU). Leaf export was unaffected by defoliation but increased in leaves closer to the shoot apex. Basipetal translocation velocity in the trunk remained unaltered, indicating that more photosynthates remained in the shoot rather than being transported directly to the root sink. Defoliated plants initiated more new flush shoots but accumulated less shoot biomass per plant after 8 weeks. Carbon allocation to fine roots was smaller in defoliated plants, suggesting defoliation led to retention of carbohydrates in aboveground organs such as the trunk and other shoots from previous growing cycles. In conclusion, the low source-sink ratio increased carbon fixation without impacting individual leaf export in citrus. The results suggest that intermediate sinks such as the aboveground perennial organs play a role in mediating the translocation velocity. Further research is necessary to better understand the dynamics of source-sink regulation in citrus trees.


Asunto(s)
Carbono , Citrus , Fotosíntesis , Hojas de la Planta , Hojas de la Planta/metabolismo , Carbono/metabolismo , Fotosíntesis/fisiología , Citrus/metabolismo , Citrus/fisiología , Citrus/crecimiento & desarrollo , Ciclo del Carbono , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Biomasa , Árboles/metabolismo , Árboles/fisiología , Citrus sinensis/metabolismo , Citrus sinensis/crecimiento & desarrollo , Citrus sinensis/fisiología
3.
Phytopathology ; 114(2): 441-453, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37551959

RESUMEN

Although huanglongbing (HLB) is a devastating citrus disease, improved tolerant cultivars, such as Sugar Belle (SB) mandarin, have been identified. To understand the responses that HLB-affected SB undergoes, we compared 14CO2 fixation, carbohydrate export, phloem callose accumulation, relative expression of plant defense activators, and anatomical changes between healthy and infected SB trees versus susceptible Pineapple (PA) sweet orange. Eight- to ten-week-old leaves of infected SB showed a 2.5-fold increase in 14CO2 fixation and a 13% decrease in 14C-carbohydrate export, whereas HLB-affected PA presented a decrease of 33 and 50%, respectively. The mean distance of a callose deposit to its closest neighbor was 36% smaller in infected SB versus healthy, whereas in HLB-affected PA, it was 33% higher. Expression of papain-like cysteine proteases (PLCPs) was upregulated in SB but downregulated in PA. Infected SB showed minor alterations in the number of xylem vessels, a 16% larger xylem vessel lumen area, and a 14% increase in the proportional area of the xylem. In contrast, PA showed a 2.4-fold increase in the xylem vessel number and a 2% increase in the proportional xylem area. Three complementary mechanisms of tolerance in SB are hypothesized: (i) increased carbohydrate availability induced by greater CO2 fixation, mild effect in carbohydrate export, and local accumulation of callose in the phloem; (ii) activation of defense response via upregulation of PLCPs, and (iii) increased investment in the xylem structure. Thus, phloem and xylem modifications seem to be involved in SB tolerance.


Asunto(s)
Floema , Azúcares , Floema/fisiología , Dióxido de Carbono , Enfermedades de las Plantas , Xilema
4.
Plants (Basel) ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068602

RESUMEN

Anthocyanins are a class of natural pigments that accumulate transiently or permanently in plant tissues, often in response to abiotic and biotic stresses. They play a photoprotective role by attenuating the irradiance incident on the photochemical apparatus and quenching oxyradicals through their powerful anti-oxidative function. The objective of the current study is to understand the impact of introducing Vitis vinifera mybA1 (VvmybA1) in 'Hamlin' sweet orange trees on various aspects, including photosynthetic performance, pigment composition, and gene expression related to photosynthesis and light harvesting. We describe the relationship between anthocyanin accumulation and photosynthetic measurements in genetically modified 'Hamlin' sweet orange trees expressing the grapevine-derived Vitis vinifera mybA1 (VvmybA1). The juvenile leaves of transgenic plants displayed an intense purple color compared to the mature leaves, and microscopic visualization showed anthocyanin accumulation primarily in the leaf epidermal cells. Under optimal growth conditions, there were no significant differences in leaf gas exchange variables, suggesting normal photosynthetic performance. The chlorophyll fluorescence maximum quantum yield of PSII was slightly reduced in VvmybA1 transgenic leaves compared to the performance of the control leaves, while the total performance index per absorbance remained unaffected. Comparison of the chlorophyll and carotenoid pigment contents revealed that chlorophyllide a and carotenoid pigments, including trans-neoxanthin, trans-violaxanthin, cis-violaxanthin, zeaxanthin, antheraxanthin, and total xanthophylls were enhanced in VvmybA1 transgenic leaves. Although there were no significant changes in the rates of the gas exchange parameters, we recorded a high relative expression of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBP) and rubisco activase (RCA) in the mature leaves of transgenic plants, indicating activation of Rubisco. Our findings confirm an efficient photoacclimation of the photosynthetic apparatus, allowing the transgenic line to maintain a photosynthetic performance similar to that of the wild type.

5.
Antibiotics (Basel) ; 11(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36009961

RESUMEN

Huanglongbing (HLB), which is caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus,' is an economically important disease of citrus in many regions of the world. Due to the significant damage caused by the HLB disease in recent years, the use of antibiotics was recommended for the therapy of this destructive disease. Products with active ingredients oxytetracycline and streptomycin have been approved for the control of the HLB via foliar application. However, previous work raised questions about the efficacy of foliar delivery of antibiotics in the field. In this study, we examined the effects of a variety of adjuvants on the uptake of oxytetracycline and streptomycin using the foliar application. We also compared the efficiency of foliar application of oxytetracycline and streptomycin with trunk injection. The 'Ca. L. asiaticus' titers in citrus plants were measured using quantitative PCR, and the levels of antibiotics were determined using the ELISA assay. Our results include extremely low levels of oxytetracycline and streptomycin in leaves that were covered during foliar application, indicating that neither streptomycin nor oxytetracycline was successfully systemically delivered by foliar application even after being mixed with adjuvants. Likewise, the 'Ca. L. asiaticus' titer0 was not affected by any of the foliar applications. High levels of streptomycin were detected in leaves that were exposed to direct foliar application, indicating that streptomycin was adsorbed or bound to citrus leaves. On the other hand, the trunk injection of oxytetracycline resulted in high levels of this antibiotic in leaves and significantly reduced the level of 'Ca. L. asiaticus' titer in citrus trees. Unfortunately, the trunk injection of streptomycin resulted in low levels of streptomycin in citrus leaves and did not affect the 'Ca. L. asiaticus' titer, indicating that streptomycin was either bound in the xylem of citrus trees or it was not applied in sufficient quantity required for the inhibition of 'Ca. L. asiaticus.' Taken together, our current results demonstrated that foliar application of oxytetracycline and streptomycin did not effectively deliver antibiotics in citrus despite using adjuvants. Our results also suggested that oxytetracycline could be more effective against the HLB pathogen than streptomycin, which is possibly due to differences between the two in systemic movement in citrus trees.

6.
Planta ; 256(2): 43, 2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35842878

RESUMEN

MAIN CONCLUSION: Loss of CALS7 appears to confer increased susceptibility to phytoplasma infection in Arabidopsis, altering expression of genes involved in sugar metabolism and membrane transport. Callose deposition around sieve pores, under control of callose synthase 7 (CALS7), has been interpreted as a mechanical response to limit pathogen spread in phytoplasma-infected plants. Wild-type and Atcals7ko mutants were, therefore, employed to unveil the mode of involvement of CALS7 in the plant's response to phytoplasma infection. The fresh weights of healthy and CY-(Chrysanthemum Yellows) phytoplasma-infected Arabidopsis wild type and mutant plants indicated two superimposed effects of the absence of CALS7: a partial impairment of photo-assimilate transport and a stimulated phytoplasma proliferation as illustrated by a significantly increased phytoplasma titre in Atcal7ko mutants. Further studies solely dealt with the effects of CALS7 absence on phytoplasma growth. Phytoplasma infection affected sieve-element substructure to a larger extent in mutants than in wild-type plants, which was also true for the levels of some free carbohydrates. Moreover, infection induced a similar upregulation of gene expression of enzymes involved in sucrose cleavage (AtSUS5, AtSUS6) and transmembrane transport (AtSWEET11) in mutants and wild-type plants, but an increased gene expression of carbohydrate transmembrane transporters (AtSWEET12, AtSTP13, AtSUC3) in infected mutants only. It remains still unclear how the absence of AtCALS7 leads to gene upregulation and how an increased intercellular mobility of carbohydrates and possibly effectors contributes to a higher susceptibility. It is also unclear if modified sieve-pore structures in mutants allow a better spread of phytoplasmas giving rise to higher titre.


Asunto(s)
Arabidopsis , Chrysanthemum , Phytoplasma , Arabidopsis/metabolismo , Chrysanthemum/genética , Phytoplasma/metabolismo , Enfermedad por Fitoplasma , Plantas
7.
Plant Physiol Biochem ; 182: 145-153, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500525

RESUMEN

Vanilla planifolia is an obligate sciophyte (shade plant) with crassulacean acid metabolism (CAM) photosynthesis. Plants were grown for 12 months under black, blue, green, or red photoselective shade netting (PSN) to alter the spectral light distribution impacting the plants. Light wavelengths were measured in each treatment and plants were assessed for photosynthetic characteristics, leaf chlorophyll index (LCI), maximum quantum yield of photosystem II, leaf reflectance indices, leaf area, growth, antioxidant enzymes, lipid peroxidation, reactive oxygen species (ROS), and osmolyte content. Plants grown under red PSN had a higher quantity of red and far-red light and had greater nocturnal net CO2 assimilation (NocA), leaf area and leaf dry weight than plants in the other treatments. Plants grown under blue PSN had a higher quantity of blue light, resulting in a higher LCI and maximum quantum yield than plants in the other treatments. Plants grown under the red and blue PSN had increased leaf spectral reflectance indices compared to plants in the other treatments, which resulted in the highest levels of antioxidant scavenging enzymes, ascorbic acid (AsA), proline, and glycine betaine, and the lowest levels of H2O2. These findings demonstrate that increasing light in the red and far-red or blue portions of the spectrum by using PSN alters the photosynthetic and/or antioxidant responses of V. planifolia and increasing red and far-red light by using red PSN can also accelerate plant growth, possibly due to higher photosynthesis.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Antioxidantes/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Plantas/metabolismo
8.
Physiol Plant ; 174(2): e13662, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35253914

RESUMEN

Huanglongbing (HLB) is a phloem-affecting disease in citrus that reduces growth and impacts global citrus production. HLB is caused by a phloem-limited bacterium (Candidatus Liberibacter asiaticus). By inhibiting phloem function, HLB stunts sink growth, including the production of new shoots and leaves, and induces hyperaccumulation of foliar starch. HLB induces feedback inhibition of photosynthesis by reducing foliar carbohydrate export. Here, we assessed the relationship of bacterial distribution within the foliage, foliar starch accumulation, and net CO2 assimilation (Anet ). Because HLB impacts canopy morphology, we developed a chamber to measure whole-shoot Anet to test the effects of HLB at both the leaf and shoot level. Whole-shoot level Anet saturated at high irradiance, and green stems had high photosynthetic rates compared to leaves. Starch accumulation was correlated with bacterial population, and starch was negatively correlated with Anet at the leaf but not at the shoot level. Starch increased initially after infection, then decreased progressively with increasing length of infection. HLB infection reduced Anet at the leaf level but increased it at the whole-shoot level, in association with reduced leaf size and greater relative contribution of stems to the photosynthetic surface area. Although HLB-increased photosynthetic efficiency, total carbon fixed per shoot decreased because photosynthetic surface area was reduced. We conclude that the localized effects of infection on photosynthesis are mitigated by whole-shoot morphological acclimation over time. Stems contribute important proportions of whole-shoot Anet , and these contributions are likely increased by the morphological acclimation induced by HLB.


Asunto(s)
Citrus , Rhizobiaceae , Floema/metabolismo , Fotosíntesis , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Almidón/metabolismo
9.
J Exp Bot ; 73(11): 3569-3583, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35304891

RESUMEN

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomasa , Nitratos/metabolismo , Óxidos de Nitrógeno/metabolismo , Raíces de Plantas/metabolismo
11.
Tree Physiol ; 42(2): 379-390, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34617106

RESUMEN

Huanglongbing (HLB), caused by Candidatus `Liberibacter asiaticus' (CLas), is a phloem-limited disease that disrupts citrus production in affected areas. In HLB-affected plants, phloem sieve plate pores accumulate callose, and leaf carbohydrate export is reduced. However, whether HLB causes a reduction in carbohydrate phloem translocation speed and the quantitative relationships among callose, CLas population and phloem translocation are still unknown. In this work, a procedure was developed to concurrently measure sugar transport, callose deposition and relative pathogen population at different locations throughout the stem. Increasing quantities of CLas genetic material were positively correlated with quantity and density of callose deposits and negatively correlated with phloem translocation speed. Callose deposit quantity was position and rootstock dependent and was negatively correlated with phloem translocation speed, suggesting a localized relationship. Remarkably, callose accumulation and phloem translocation disruption in the scion were dependent on rootstock genotype. Regression results suggested that the interaction of Ct values and number of phloem callose depositions, but not their size or density, explained the effects on translocation speed. Sucrose, starch and sink 14C label allocation data support the interpretation of a transport pathway limitation by CLas infection. This work shows that the interaction of local accumulation of callose and CLas affects phloem transport. Furthermore, the extent of this accumulation is attenuated by the rootstock and provides important information about the disease mechanism of phloem-inhabiting bacteria. Together, these results constitute the first example of a demonstrated transport limitation of phloem function by a microbial infection.


Asunto(s)
Citrus , Rhizobiaceae , Citrus/metabolismo , Glucanos , Floema/metabolismo , Enfermedades de las Plantas/microbiología
12.
Plant Cell Environ ; 45(1): 105-120, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723384

RESUMEN

Consequences of warming and postwarming events on photosynthetic thermotolerance (PT ) and photoprotective responses in tropical evergreen species remain elusive. We chose Citrus to answer some of the emerging questions related to tropical evergreen species' PT behaviour including (i) how wide is the genotypic variation in PT ? (ii) how does PT respond to short-term warming and (iii) how do photosynthesis and photoprotective functions respond over short-term warming and postwarming events? A study on 21 genotypes revealed significant genotypic differences in PT , though these were not large. We selected five genotypes with divergent PT and simulated warming events: Tmax 26/20°C (day-time highest maximum/night-time lowest maximum) (Week 1) < Tmax 33/30°C (Week 2) < Tmax 36/32°C (Week 3) followed by Tmax 26/16°C (Week 4, recovery). The PT of all genotypes remained unaltered despite strong leaf megathermy (leaf temperature > air temperature) during warming events. Though moderate warming showed genotype-specific stimulation in photosynthesis, higher warming unequivocally led to severe loss in net photosynthesis and induced higher nonphotochemical quenching. Even after a week of postwarming, photoprotective mechanisms strongly persisted. Our study points towards a conservative PT in evergreen citrus genotypes and their need for sustaining higher photoprotection during warming as well as postwarming recovery conditions.


Asunto(s)
Citrus/fisiología , Termotolerancia/fisiología , Citrus/genética , Genotipo , Calor , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Clima Tropical
13.
Physiol Plant ; 174(1): e13601, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796913

RESUMEN

Flush shoot growth presents a fluctuation pattern alternating with root growth. The cyclic pattern determines the balance of root:shoot and can affect the direction and speed of carbohydrate translocation during the vegetative growth period. In this study, we used water deficit to limit corresponding growth in sweet orange (Citrus x sinensis) "OLL 4" grafted on "US-942" rootstock, and then observed the changes of translocation dynamics between two flush statuses. Our first hypothesis was that water deficit would reduce root growth and extend the root growth phase during the growth cycle, delaying the following flush. We then tested the related second hypothesis that shoot flushes would switch the direction and slow the speed of carbohydrate transport due to fluctuation between single and dual sinks. After recovery from a severe deficit, the flush was synchronized and emerged within 2 weeks. Mild and moderate water-deficit plants showed a delayed new flush. Next, we used a 14 C-labeling method to test whether translocation was affected by the presence of new flush. Basipetal translocation was dominant, but the new flush increased the likelihood of acropetal translocation. Translocation speeds were not different in both directions regardless of flushing status, though speed estimates were highly variable, even though 14 C export from the source leaf increased when new flush was present. The results suggest that flush timing across an environmental gradient is governed by source-sink dynamics. The presence of new flush altered the direction of photoassimilate translocation and rate of leaf export, but stem transport speeds were not distinguishably different.


Asunto(s)
Citrus sinensis , Citrus , Carbohidratos , Hojas de la Planta , Agua
14.
Plants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616171

RESUMEN

Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most costly disease for the global citrus industry. Currently, no effective tools have been found to control HLB. Most commercial citrus varieties are susceptible to HLB, though some citrus hybrid cultivars have reduced sensitivity to the disease. Citrus breeding populations contain a large diversity of germplasm, with thousands of unique genotypes exhibiting a broad range of phenotypes. Understanding phenotypic variation and genetic inheritance in HLB-affected mandarin hybrid populations are crucial for breeding tolerant citrus varieties. In this study, we assessed 448 diverse mandarin hybrids coming from 30 crosses, and 45 additional accessions. For HLB tolerance, we measured HLB severity visual score and CLas titers by qPCR. We also measured seven morphophysiological traits indirectly related to HLB tolerance with leaf area index (LAI), leaf area (LA), leaf mass per area (LMA), photosystem II parameters (Fv/Fo, Fv/Fm), and photochemical performance index (PIabs). By estimating the genetic variation in five half-sib families, we estimated the heritability of phenotypic traits and found a significant genetic effect on HLB visual score and photosynthesis parameters, which indicates opportunities for the genetic improvement of HLB tolerance. In addition, although it is easy to identify infected trees based on HLB symptomatic leaves, visually phenotyping whole trees can be difficult and inconsistent due to the interpersonal subjectivity of characterization. We investigated their relationships and found that LAI was highly correlated with HLB score, with correlation coefficients of r = 0.70 and r = 0.77 for the whole population and five half-sib families, respectively. Photochemical parameters showed significant correlation with HLB severity and responded differentially with the side of the canopy. Our study suggests that LAI and photochemical parameters could be used as a rapid and cost-effective method to evaluate HLB tolerance and inheritance in citrus breeding programs.

15.
Plant J ; 108(6): 1798-1814, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687249

RESUMEN

Under tropical and subtropical environments, citrus leaves are exposed to excess sunlight, inducing photoinhibition. Huanglongbing (HLB, citrus greening), a devastating phloem-limited disease putatively caused by Candidatus Liberibacter asiaticus, exacerbates this challenge with additional photosynthetic loss and excessive starch accumulation. A combined metabolomics and physiological approach was used to elucidate whether shade alleviates the deleterious effects of HLB in field-grown citrus trees, and to understand the underlying metabolic mechanisms related to shade-induced morpho-physiological changes in citrus. Using metabolite profiling and multinomial logistic regression, we identified pivotal metabolites altered in response to shade. A core metabolic network associated with shade conditions was identified through pathway enrichment analysis and metabolite mapping. We measured physio-biochemical responses and growth and yield characteristics. With these, the relationships between metabolic network and the variables measured above were investigated. We found that moderate-shade alleviates sink limitation by preventing excessive starch accumulation and increasing foliar sucrose levels. Increased growth and fruit yield in shaded compared with non-shaded trees were associated with increased photosystem II efficiency and leaf carbon fixation pathway metabolites. Our study also shows that, in HLB-affected trees under shade, the signaling of plant hormones (auxins and cytokinins) and nitrogen supply were downregulated with reducing new shoot production likely due to diminished needs of cell damage repair and tissue regeneration under shade. Overall, our findings provide the first glimpse of the complex dynamics between cellular metabolites and leaf physiological functions in citrus HLB pathosystem under shade, and reveal the mechanistic basis of how shade ameliorates HLB disease.


Asunto(s)
Citrus/metabolismo , Citrus/microbiología , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Citrus/crecimiento & desarrollo , Florida , Frutas/crecimiento & desarrollo , Liberibacter , Luz , Redes y Vías Metabólicas , Metabolómica/métodos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Brotes de la Planta/crecimiento & desarrollo , Almidón/metabolismo
16.
Plants (Basel) ; 10(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34371641

RESUMEN

Huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), is the primary biotic stress causing significant economic damage to the global citrus industry. Among the abiotic stresses, salinity affects citrus production worldwide, especially in arid and coastal regions. In this study, we evaluated open-pollinated seedlings of the S10 (a diploid rootstock produced from a cross between two siblings of the Hirado Buntan Pink pummelo (Citrus maxima (Burm.) Merr.) with the Shekwasha mandarin (Citrus reticulata Blanco)) for their ability to tolerate HLB and salinity stresses. In a greenhouse study, 'Valencia' sweet orange (either HLB-positive or negative) was grafted onto six clonally propagated lines generated from the screened seedlings in the greenhouse and the trees were irrigated with 150 mM NaCl after eight months of successful grafting and detection of CaLas in the leaf petioles. Cleopatra mandarin was used as a salt-tolerant and HLB-sensitive rootstock control. CaLas infection was monitored using a quantitative polymerase chain reaction before and after NaCl treatments. Following three months of NaCl treatment, 'Valencia' leaves on the S10 rootstock seedlings recorded lower levels of chlorophyll content compared to Cleopatra under similar conditions. Malondialdehyde content was higher in HLB-infected 'Valencia' grafted onto Cleopatra than in the S10 lines. Several plant defense-related genes were significantly upregulated in the S10 lines. Antioxidant and Na+ co-transporter genes were differentially regulated in these lines. Based on our results, selected S10 lines have potential as salt-tolerant rootstocks of 'Valencia' sweet orange under endemic HLB conditions. However, it is necessary to propagate selected lines through tissue culture or cuttings because of the high percentage of zygotic seedlings derived from S10.

17.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200843

RESUMEN

Iridium-containing NaTaO3 is produced using a one-step hydrothermal crystallisation from Ta2O5 and IrCl3 in an aqueous solution of 10 M NaOH in 40 vol% H2O2 heated at 240 °C. Although a nominal replacement of 50% of Ta by Ir was attempted, the amount of Ir included in the perovskite oxide was only up to 15 mol%. The materials are formed as crystalline powders comprising cube-shaped crystallites around 100 nm in edge length, as seen by scanning transmission electron microscopy. Energy dispersive X-ray mapping shows an even dispersion of Ir through the crystallites. Profile fitting of powder X-ray diffraction (XRD) shows expanded unit cell volumes (orthorhombic space group Pbnm) compared to the parent NaTaO3, while XANES spectroscopy at the Ir LIII-edge reveals that the highest Ir-content materials contain Ir4+. The inclusion of Ir4+ into the perovskite by replacement of Ta5+ implies the presence of charge-balancing defects and upon heat treatment the iridium is extruded from the perovskite at around 600 °C in air, with the presence of metallic iridium seen by in situ powder XRD. The highest Ir-content material was loaded with Pt and examined for photocatalytic evolution of H2 from aqueous methanol. Compared to the parent NaTaO3, the Ir-substituted material shows a more than ten-fold enhancement of hydrogen yield with a significant proportion ascribed to visible light absorption.

18.
Tree Physiol ; 41(12): 2359-2374, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34077547

RESUMEN

Water scarcity restricts citrus growth and productivity worldwide. In pot conditions, tetraploid plants tolerate water deficit more than their corresponding diploids. However, their tolerance mechanisms remain elusive. In this study, we focused on which mechanisms (i.e., hydraulic, osmotic or antioxidative) confer water-deficit tolerance to tetraploids. We exposed diploid and tetraploid Volkamer lemon rootstock (Citrus volkameriana Tan. and Pasq.) to quickly (fast) and slowly (slow) developing water-deficit conditions. We evaluated their physiological, antioxidative defense and osmotic adjustment responses, and mineral distribution to leaves and roots. Water-deficit conditions decreased the photosynthetic variables of both diploid and tetraploid plants. Moreover, the corresponding decrease was greater in diploids than tetraploids. Higher concentrations of antioxidant enzymes, osmoprotectants and antioxidant capacity were found in the leaves and roots of tetraploids than diploids under water deficit. Diploid plants showed fast response in slow water-deficit condition, but that response did not persist as the deficit intensified. Meanwhile, tetraploids had lower water loss, which slowed the onset of slow water deficit relative to diploids. This response allowed stronger photosynthesis, while antioxidant and osmoprotectant production allowed for further tolerance once desiccation began. Overall, our results concluded that Volkamer lemon tetraploid plants tolerate rapid and slow water deficit by maintaining their photosynthesis due to low conductance (stem or roots), which helps to avoid desiccation, and stronger biochemical defense machinery than their corresponding diploids.


Asunto(s)
Citrus , Tetraploidía , Citrus/genética , Diploidia , Raíces de Plantas/genética , Agua
19.
New Phytol ; 230(5): 1911-1924, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33638181

RESUMEN

The green leaves of plants are optimised for carbon fixation and the production of sugars, which are used as central units of carbon and energy throughout the plant. However, there are physical limits to this optimisation that remain insufficiently understood. Here, quantitative anatomical analysis combined with mathematical modelling and sugar transport rate measurements were used to determine how effectively sugars are exported from the needle-shaped leaves of conifers in relation to leaf length. Mathematical modelling indicated that phloem anatomy constrains sugar export in long needles. However, we identified two mechanisms by which this constraint is overcome, even in needles longer than 20 cm: (1) the grouping of transport conduits, and (2) a shift in the diurnal rhythm of sugar metabolism and export in needle tips. The efficiency of sugar transport in the phloem can have a significant influence on leaf function. The constraints on sugar export described here for conifer needles are likely to also be relevant in other groups of plants, such as grasses and angiosperm trees.


Asunto(s)
Tracheophyta , Transporte Biológico , Agujas , Floema , Hojas de la Planta , Azúcares
20.
Phytopathology ; 111(7): 1122-1128, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33090080

RESUMEN

'Candidatus Liberibacter asiaticus' (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to citrus cells in local tissues have not been addressed previously. The total CLas population size for 2.5-year-old 'Valencia' sweet orange on 'Kuharske' citrange rootstock trees was quantified using quantitative PCR to be approximately 1.74 × 109 cells/tree, whereas 7- and 20-year-old sweet orange trees were estimated to be 4.3 × 1010 cells/tree, and 6.0 × 1010 cells/tree, respectively. The majority of CLas cells were distributed in leaf tissues (55.58%), followed by those in branch (36.78%), feeder root (4.75%), trunk (2.39%), and structural root (0.51%) tissues. The ratios of citrus cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples were within approximately 39 to 79, 44 to 124, 153 to 1,355, 191 to 1,054, and 561 to 3,760, respectively, representing the metabolic burden of CLas in different organs. It was estimated that the ratios of phloem cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples are approximately 0.39 to 0.79, 0.44 to 1.24, 1.53 to 13.55, 1.91 to 10.54, and 5.61 to 37.60, respectively. Approximately 0.01% of the total citrus phloem volume was estimated to be occupied by CLas, explaining the difficulty to observe CLas in most tissues under transmission electron microscopy. The CLas titer inside the leaf was estimated to be approximately 1.64 × 106 cells/leaf or 9.2 × 104 cells cm-2 in leaves, approximately 104 times less than that of typical apoplastic bacterial pathogens. This study provides quantitative estimates of phloem colonization by bacterial pathogens and furthers the understanding of the biology and virulence mechanisms of CLas.


Asunto(s)
Citrus , Rhizobiaceae , Liberibacter , Floema , Enfermedades de las Plantas , Densidad de Población , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...