Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hemasphere ; 8(5): e75, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38765276
3.
Artículo en Inglés | MEDLINE | ID: mdl-38658189

RESUMEN

Iron is a fundamental element for biological life, starting from bacteria till humans. Iron is essential for cell function and survival, energy production and metabolism, whereas increased levels cause oxidative stress. It is also a constituent of haemoglobin and thus it is necessary for oxygen transportation through the body. Given these multiple functions, the regulation of iron metabolism is complex and tight coupled with oxygen homeostasis at tissue and cellular levels, thanks to the interaction with the hypoxia inducible factor (HIF) system. In patients with chronic kidney disease (CKD), iron deficiency significantly contributes to anaemia development. This frequently overlaps with chronic inflammation, causing iron- restricted erythropoiesis. To add further complexity, metabolic hyperferritinemia may, on one side, increase the risk for CKD and, on the other, overlaps with functional iron deficiency. Excessive intracellular iron in certain cell types during CKD can also mediate cellular death (called ferroptosis), and contribute to the pathogenesis of kidney damage, atherosclerosis and vascular calcifications. This review is aimed at broadening the perspective of iron metabolism in the setting of CKD not just as a contributor to anaemia in CKD patients, but also as an important player with an impact on cell metabolism, renal fibrosis, and the cardiovascular system.

4.
Hemasphere ; 8(1): e25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38434529
6.
Hemasphere ; 8(3): e46, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501049
7.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38127913

RESUMEN

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Asunto(s)
Anemia de Células Falciformes , Eritropoyesis , Ratones , Animales , Humanos , Eritropoyesis/fisiología , Factor de Transcripción STAT5/metabolismo , Hemólisis , Hemina/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Anemia de Células Falciformes/complicaciones
10.
Hemasphere ; 7(7): e910, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37346451
11.
Blood ; 141(25): 3091-3108, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36952641

RESUMEN

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid ß-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.


Asunto(s)
Anemia de Células Falciformes , Hemo , Humanos , Hemo/metabolismo , Interleucina-4/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , PPAR gamma , Receptor Toll-Like 4/metabolismo , Macrófagos/metabolismo , Anemia de Células Falciformes/metabolismo , Inflamación/metabolismo
12.
Hemasphere ; 7(3): e850, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36844187
13.
Nat Rev Endocrinol ; 19(5): 299-310, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36805052

RESUMEN

Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.


Asunto(s)
Sobrecarga de Hierro , Hierro , Humanos , Hierro/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Sobrecarga de Hierro/diagnóstico , Sobrecarga de Hierro/genética
14.
Haematologica ; 108(5): 1335-1348, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700398

RESUMEN

Cardiomyopathy deeply affects quality of life and mortality of patients with b-thalassemia or with transfusion-dependent myelodysplastic syndromes. Recently, a link between Nrf2 activity and iron metabolism has been reported in liver ironoverload murine models. Here, we studied C57B6 mice as healthy control and nuclear erythroid factor-2 knockout (Nrf2-/-) male mice aged 4 and 12 months. Eleven-month-old wild-type and Nrf2-/- mice were fed with either standard diet or a diet containing 2.5% carbonyl-iron (iron overload [IO]) for 4 weeks. We show that Nrf2-/- mice develop an age-dependent cardiomyopathy, characterized by severe oxidation, degradation of SERCA2A and iron accumulation. This was associated with local hepcidin expression and increased serum non-transferrin-bound iron, which promotes maladaptive cardiac remodeling and interstitial fibrosis related to overactivation of the TGF-b pathway. When mice were exposed to IO diet, the absence of Nrf2 was paradoxically protective against further heart iron accumulation. Indeed, the combination of prolonged oxidation and the burst induced by IO diet resulted in activation of the unfolded protein response (UPR) system, which in turn promotes hepcidin expression independently from heart iron accumulation. In the heart of Hbbth3/+ mice, a model of b-thalassemia intermedia, despite the activation of Nrf2 pathway, we found severe protein oxidation, activation of UPR system and cardiac fibrosis independently from heart iron content. We describe the dual role of Nrf2 when aging is combined with IO and its novel interrelation with UPR system to ensure cell survival. We open a new perspective for early and intense treatment of cardiomyopathy in patients with b-thalassemia before the appearance of heart iron accumulation.


Asunto(s)
Cardiomiopatías , Sobrecarga de Hierro , Talasemia , Animales , Masculino , Ratones , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Hepcidinas , Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Calidad de Vida , Talasemia/complicaciones , Talasemia/genética , Talasemia/metabolismo
15.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36394951

RESUMEN

Systemic iron metabolism is disrupted in chronic kidney disease (CKD). However, little is known about local kidney iron homeostasis and its role in kidney fibrosis. Kidney-specific effects of iron therapy in CKD also remain elusive. Here, we elucidate the role of macrophage iron status in kidney fibrosis and demonstrate that it is a potential therapeutic target. In CKD, kidney macrophages exhibited depletion of labile iron pool (LIP) and induction of transferrin receptor 1, indicating intracellular iron deficiency. Low LIP in kidney macrophages was associated with their defective antioxidant response and proinflammatory polarization. Repletion of LIP in kidney macrophages through knockout of ferritin heavy chain (Fth1) reduced oxidative stress and mitigated fibrosis. Similar to Fth1 knockout, iron dextran therapy, through replenishing macrophage LIP, reduced oxidative stress, decreased the production of proinflammatory cytokines, and alleviated kidney fibrosis. Interestingly, iron markedly decreased TGF-ß expression and suppressed TGF-ß-driven fibrotic response of macrophages. Iron dextran therapy and FtH suppression had an additive protective effect against fibrosis. Adoptive transfer of iron-loaded macrophages alleviated kidney fibrosis, validating the protective effect of iron-replete macrophages in CKD. Thus, targeting intracellular iron deficiency of kidney macrophages in CKD can serve as a therapeutic opportunity to mitigate disease progression.


Asunto(s)
Deficiencias de Hierro , Insuficiencia Renal Crónica , Humanos , Hierro/metabolismo , Dextranos/metabolismo , Riñón/patología , Insuficiencia Renal Crónica/metabolismo , Macrófagos/metabolismo , Complejo Hierro-Dextran/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo
18.
Hemasphere ; 6(2): e682, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198857
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...