Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518247

RESUMEN

INTRODUCTION: Animal models are regularly used to test the role of the gut microbiome in hypertension. Small-scale pre-clinical studies have investigated changes to the gut microbiome in the angiotensin II hypertensive model. However, the gut microbiome is influenced by internal and external experimental factors which are not regularly considered in the study design. Once these factors are accounted for, it is unclear if microbiome signatures are reproduceable. We aimed to determine the influence of angiotensin II treatment on the gut microbiome using a large and diverse cohort of mice and to quantify the magnitude by which other factors contribute to microbiome variations. METHODS AND RESULTS: We conducted a retrospective study to establish a diverse mouse cohort resembling large human studies. We sequenced the V4 region of the 16S rRNA gene from 538 samples across the gastrointestinal tract of 303 male and female C57BL/6J mice randomised into sham or angiotensin II treatment from different genotypes, diets, animal facilities, and age groups. Analysing over 17 million sequencing reads, we observed that angiotensin II treatment influenced α-diversity (P = 0.0137) and ß-diversity (i.e., composition of the microbiome, P < 0.001). Bacterial abundance analysis revealed patterns consistent with a reduction in short-chain fatty acid-producers, microbial metabolites that lower blood pressure. Furthermore, animal facility, genotype, diet, age, sex, intestinal sampling site, and sequencing batch had significant effects on both α- and ß-diversity (all P < 0.001). Sampling site (6.8%) and diet (6%) had the largest impact on the microbiome, while angiotensin II and sex had the smallest effect (each 0.4%). CONCLUSIONS: Our large-scale data confirmed findings from small-scale studies that angiotensin II impacted the gut microbiome. However, this effect was modest relative to most of the other factors studied. Accounting for these factors in future pre-clinical hypertensive studies will increase the likelihood that microbiome findings are replicable and translatable.

2.
Physiol Genomics ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525531

RESUMEN

Single-cell technologies such as flow cytometry and single-cell RNA sequencing (scRNAseq) have allowed for comprehensive characterisation of the kidney cellulome. However, there is disparity in the various protocols for preparing kidney single-cell suspensions. We aimed to address this limitation by characterising kidney cellular heterogeneity using three previously published single-cell preparation protocols. Single-cell suspensions were prepared from male and female C57BL/6 kidneys using the following kidney tissue dissociation protocols: (P1) a scRNAseq protocol; (P2) a multi-tissue digestion kit from Miltenyi Biotec; and (P3) a protocol established in our laboratory. Following dissociation, flow cytometry was used to identify known major cell types including leukocytes (myeloid and lymphoid), vascular cells (smooth-muscle and endothelial), nephron epithelial cells (intercalating, principal, proximal and distal tubule cells), podocytes, and fibroblasts. Of the protocols tested, P2 yielded significantly less leukocytes and type B-intercalating cells compared to the other techniques. P1 and P3 produced similar yields for most cell types, however, endothelial and myeloid-derived cells were significantly enriched using P1. Significant sex differences were detected in only two cell types: granulocytes (increased in males) and smooth muscle cells (increased in females). Future single-cell studies that aim to enrich for specific kidney cell types, may benefit from this comparative analysis.

3.
Hypertension ; 81(4): 738-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318714

RESUMEN

Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Humanos , ARN , Aorta/metabolismo , Enfermedades de la Aorta/genética , Perfilación de la Expresión Génica , Aterosclerosis/genética , Aterosclerosis/metabolismo
4.
Sci Rep ; 14(1): 1837, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246932

RESUMEN

Vascular inflammation and fibrosis are hallmarks of hypertension and contribute to the development of cardiovascular disease and cognitive impairment. However, current anti-hypertensive drugs do not treat the underlying tissue damage, such as inflammation-associated fibrosis. Human amnion epithelial cells have several properties amenable for treating vascular pathology. This study tested the effect of amnion epithelial cells on vascular pathology and cognitive impairment during hypertension. Male C57Bl6 mice (8-12 weeks) were administered vehicle (saline; n = 58) or angiotensin II (0.7 mg/kg/d, n = 56) subcutaneously for 14 d. After surgery, a subset of mice were injected with 106 amnion epithelial cells intravenously. Angiotensin II infusion increased systolic blood pressure, aortic pulse wave velocity, accumulation of aortic leukocytes, and aortic mRNA expression of collagen subtypes compared to vehicle-infused mice (n = 9-11, P < 0.05). Administration of amnion epithelial cells attenuated these effects of angiotensin II (P < 0.05). Angiotensin II-induced cognitive impairment was prevented by amnion epithelial cell therapy (n = 7-9, P < 0.05). In the brain, amnion epithelial cells modulated some of the inflammatory genes that angiotensin II promoted differential expression of (n = 6, p-adjusted < 0.05). These findings suggest that amnion epithelial cells could be explored as a potential therapy to inhibit vascular pathology and cognitive impairment during hypertension.


Asunto(s)
Disfunción Cognitiva , Hipertensión , Humanos , Animales , Masculino , Ratones , Amnios , Angiotensina II , Análisis de la Onda del Pulso , Ratones Endogámicos C57BL , Hipertensión/terapia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Células Epiteliales , Inflamación , Fibrosis
5.
Sci Rep ; 13(1): 21644, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062083

RESUMEN

Obesity and vascular dysfunction are independent and sexually dimorphic risk factors for cardiovascular disease. A high fat diet (HFD) is often used to model obesity in mice, but the sex-specific effects of this diet on aortic inflammation and function are unclear. Therefore, we characterized the aortic immune cell profile and function in 6-week-old male and female C57BL/6 mice fed a normal chow diet (NCD) or HFD for 10 weeks. Metabolic parameters were measured weekly and fortnightly. At end point, aortic immune cell populations and endothelial function were characterized using flow cytometry and wire myography. HFD-male mice had higher bodyweight, blood cholesterol, fasting blood glucose and plasma insulin levels than NCD mice (P < 0.05). HFD did not alter systolic blood pressure (SBP), glycated hemoglobin or blood triglycerides in either sex. HFD-females had delayed increases in bodyweight with a transient increase in fasting blood glucose at week 8 (P < 0.05). Flow cytometry revealed fewer proinflammatory aortic monocytes in females fed a HFD compared to NCD. HFD did not affect aortic leukocyte populations in males. Conversely, HFD impaired endothelium-dependent vasorelaxation, but only in males. Overall, this highlights biological sex as a key factor determining vascular disease severity in HFD-fed mice.


Asunto(s)
Resistencia a la Insulina , Enfermedades no Transmisibles , Masculino , Femenino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Glucemia/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Inflamación/metabolismo
6.
Sci Rep ; 13(1): 10943, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414864

RESUMEN

The association between constipation and cardiovascular risk is unclear. This population-level matched cohort study compared the association of constipation with hypertension and incident cardiovascular events in 541,172 hospitalized patients aged ≥ 60 years. For each constipation admission, one exact age-matched non-constipated admission was randomly selected from all hospitalizations within 2 weeks to form the comparison cohort. The association of constipation with hypertension and cardiovascular events (myocardial infarction, angina, stroke and transient ischemic attack) were analysed using a series of binary logistic regressions adjusting for age, sex, cardiovascular risk factors, gastrointestinal disorders and sociological factors. Patients with constipation had a higher multivariate-adjusted risk for hypertension (odds ratio [OR], 1.96; 95% confidence interval [CI] 1.94-1.99; P < 0.001). Compared to patients with neither constipation nor hypertension, there was a higher multivariate-adjusted risk for cardiovascular events in patients with constipation alone (OR, 1.58; 95% CI 1.55-1.61; P < 0.001) or hypertension alone (OR, 6.12; 95% CI 5.99-6.26; P < 0.001). In patients with both constipation and hypertension, the risk for all cardiovascular events appeared to be additive (OR, 6.53; 95% CI 6.40-6.66; P < 0.001). In conclusion, among hospital patients aged 60 years or older, constipation is linked to an increased risk of hypertension and cardiovascular events. These findings suggest that interventions to address constipation may reduce cardiovascular risk in elderly patients.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Accidente Cerebrovascular , Anciano , Humanos , Australia/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios de Cohortes , Estreñimiento/complicaciones , Estreñimiento/epidemiología , Hipertensión/complicaciones , Hipertensión/epidemiología , Pacientes Internos , Factores de Riesgo , Accidente Cerebrovascular/complicaciones
7.
Front Cardiovasc Med ; 10: 1184982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332591

RESUMEN

Introduction: Depletion of mature B cells affords protection against experimental hypertension. However, whether B cell-mediated hypertension is dependent on differentiation into antibody-secreting cells (ASCs) remains unclear. Using the proteasome inhibitor, bortezomib, the present study tested the effect of ASC reduction on angiotensin II-induced hypertension. Methods: Male C57BL6/J mice were infused with angiotensin II (0.7 mg/kg/day; s.c.) for 28 days via osmotic minipump to induce hypertension. Normotensive control mice received saline infusion. Bortezomib (750 µg/kg) or vehicle (0.1% DMSO) was administered (i.v.) 3 days prior to minipump implantation, and twice weekly thereafter. Systolic blood pressure was measured weekly using tail-cuff plethysmography. Spleen and bone marrow B1 (CD19+B220-), B2 (B220+CD19+) and ASCs (CD138hiSca-1+Blimp-1+) were enumerated by flow cytometry. Serum immunoglobulins were quantified using a bead-based immunoassay. Results: Bortezomib treatment reduced splenic ASCs by ∼68% and ∼64% compared to vehicle treatment in normotensive (2.00 ± 0.30 vs. 0.64 ± 0.15 × 105 cells; n = 10-11) and hypertensive mice (0.52 ± 0.11 vs. 0.14 ± 0.02 × 105 cells; n = 9-11), respectively. Bone marrow ASCs were also reduced by bortezomib in both normotensive (4.75 ± 1.53 vs. 1.71 ± 0.41 × 103 cells; n = 9-11) and hypertensive mice (4.12 ± 0.82 vs. 0.89 ± 0.18 × 103 cells; n = 9-11). Consistent with ASC reductions, bortezomib reduced serum IgM and IgG2a in all mice. Despite these reductions in ASCs and antibody levels, bortezomib did not affect angiotensin II-induced hypertension over 28 days (vehicle: 182 ± 4 mmHg vs. bortezomib: 177 ± 7 mmHg; n = 9-11). Conclusion: Reductions in ASCs and circulating IgG2a and IgM did not ameliorate experimental hypertension, suggesting other immunoglobulin isotypes or B cell effector functions may promote angiotensin II-induced hypertension.

8.
Neuromolecular Med ; 25(4): 451-456, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37086380

RESUMEN

Obesity is a major global health concern, with prevalence rates rapidly rising due to increased availability of highly processed foods rich in fats and/or sugars and technological advances promoting more sedentary behaviour. There is increasing evidence to suggest that obesity predisposes individuals to developing cognitive impairment and dementia. However, the relationship between the brain and the peripheral metabolic state is complex, and many of the underlying mechanisms of cognitive impairment in obesity are yet to be fully elucidated. To better understand the links between obesity and dementia, further work is required to determine pathological changes occurring in the brain during obesity. In this mini-review, we discuss the role of two pathological features of obesity (the gut-brain axis and systemic inflammation) and their potential contribution to dementia.


Asunto(s)
Disfunción Cognitiva , Demencia , Humanos , Obesidad/complicaciones , Encéfalo , Inflamación , Demencia/epidemiología , Demencia/etiología
9.
Front Immunol ; 13: 971048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248832

RESUMEN

Obesity is defined as the excessive accumulation of body fat and is associated with an increased risk of developing major health problems such as cardiovascular disease, diabetes and stroke. There are clear sexual dimorphisms in the epidemiology, pathophysiology and sequelae of obesity and its accompanying metabolic disorders, with females often better protected compared to males. This protection has predominantly been attributed to the female sex hormone estrogen and differences in fat distribution. More recently, the sexual dimorphisms of obesity have also been attributed to the differences in the composition and function of the gut microbiota, and the intestinal immune system. This review will comprehensively summarize the pre-clinical and clinical evidence for these sexual dimorphisms and discuss the interplay between sex hormones, intestinal inflammation and the gut microbiome in obesity. Major gaps and limitations of this rapidly growing area of research will also be highlighted in this review.


Asunto(s)
Hormonas Gastrointestinales , Microbioma Gastrointestinal , Estrógenos , Femenino , Hormonas Esteroides Gonadales/metabolismo , Humanos , Inflamación , Masculino , Obesidad , Caracteres Sexuales
10.
Pharmacol Ther ; 239: 108191, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35461924

RESUMEN

Chronic kidney disease (CKD) is inherently an inflammatory condition, which ultimately results in the development of end stage renal disease or cardiovascular events. Low-grade inflammatory diseases such as hypertension and diabetes are leading causes of CKD. Declines in renal function correlate with elevated circulating pro-inflammatory cytokines in patients with these conditions. The inflammasome is an important inflammatory signalling platform that has been associated with low-grade chronic inflammatory diseases. Notably, activation and assembly of the inflammasome causes the auto cleavage of pro-caspase-1 into its active form, which then processes the pro-inflammatory cytokines pro-interleukin (IL)-1ß and pro-IL-18 into their active forms. Currently, the nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in the development of CKD in pre-clinical and clinical settings, and the ablation or inhibition of inflammasome components have been shown to be reno-protective in models of CKD. While clinical trials have demonstrated that neutralisation of IL-1ß signalling by the drug anakinra lowers inflammation markers in haemodialysis patients, ongoing preclinical studies are showing that this ability to attenuate disease is limited in progressive models of kidney disease. These results suggest a potential predominant role for IL-18 in the development of CKD. This review will discuss the role of the inflammasome and its pro-inflammatory product IL-18 in the development of renal fibrosis and inflammation that contribute to the pathophysiology of CKD. Furthermore, we will examine the potential of the IL-18 signalling axis as an anti-inflammatory target in CKD and its usefulness as diagnostic biomarker to predict acute kidney injury.


Asunto(s)
Hipertensión , Insuficiencia Renal Crónica , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/tratamiento farmacológico , Citocinas/metabolismo , Inflamación
11.
Neuromolecular Med ; 24(4): 405-414, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35149957

RESUMEN

Cellular apoptosis is a key pathological mechanism contributing to neuronal death following ischemic stroke. The pro-apoptotic Bcl-2 family protein, Bim, is an important regulator of apoptosis. In this study we investigated the effect of Bim expression on post-stroke functional outcomes, brain injury and inflammatory mechanisms. Wild type (WT) and Bim-deficient mice underwent 1-h middle cerebral artery occlusion (MCAO) followed by 23 h of reperfusion. At 24-h post-stroke, we assessed functional deficit, infarct volume, immune cell death, as well as the number of infiltrating immune cells in the brain and circulating immune cells. Bim deficiency did not affect infarct volume (P > 0.05), but resulted in less motor impairment (~ threefold greater latency to fall in hanging grip strength test, P < 0.05) and a lower median clinical score than WT mice (P < 0.05). Additionally following MCAO, Bim-deficient mice exhibited fewer myeloid cells (particularly neutrophils) in the ischemic brain hemisphere and less apoptosis of CD3+ T cells in the spleen and thymus compared with WT (all P < 0.05). After MCAO, Bim-deficient mice also tended to have more M2-polarised macrophages in the brain than WT mice. In sham-operated mice, we found that Bim deficiency resulted in greater numbers of circulating total CD45+ leukocytes, Ly6Clo+ monocytes and CD3+ T cells, although MCAO did not affect the number of circulating cells at 24 h in either genotype. Our findings suggest that Bim deficiency modulates post-stroke outcomes, including reductions in motor impairment, brain inflammation and systemic post-stroke leukocyte apoptosis. Bim could therefore serve as a potential therapeutic target for stroke.


Asunto(s)
Proteína 11 Similar a Bcl2 , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Animales , Ratones , Apoptosis/genética , Encéfalo , Isquemia Encefálica/complicaciones , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Inflamación/genética , Inflamación/complicaciones , Accidente Cerebrovascular Isquémico/patología , Ratones Endogámicos C57BL , Eliminación de Gen , Proteína 11 Similar a Bcl2/genética
12.
Hypertension ; 78(5): 1296-1309, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34488433

RESUMEN

IL-18 (interleukin-18) is elevated in hypertensive patients, but its contribution to high blood pressure and end-organ damage is unknown. We examined the role of IL-18 in the development of renal inflammation and injury in a mouse model of low-renin hypertension. Hypertension was induced in male C57BL6/J (WT) and IL-18−/− mice by uninephrectomy, deoxycorticosterone acetate (2.4 mg/d, s.c.) and 0.9% drinking saline (1K/DOCA/salt). Normotensive controls received uninephrectomy and placebo (1K/placebo). Blood pressure was measured via tail cuff or radiotelemetry. After 21 days, kidneys were harvested for (immuno)histochemical, quantitative-PCR and flow cytometric analyses of fibrosis, inflammation, and immune cell infiltration. 1K/DOCA/salt-treated WT mice developed hypertension, renal fibrosis, upregulation of proinflammatory genes, and accumulation of CD3+ T cells in the kidneys. They also displayed increased expression of IL-18 on tubular epithelial cells. IL-18−/− mice were profoundly protected from hypertension, renal fibrosis, and inflammation. Bone marrow transplantation between WT and IL-18−/− mice revealed that IL-18-deficiency in non-bone marrow-derived cells alone afforded equivalent protection against hypertension and renal injury as global IL-18 deficiency. IL-18 receptor subunits­interleukin-18 receptor 1 and IL-18R accessory protein­were upregulated in kidneys of 1K/DOCA/salt-treated WT mice and localized to T cells and tubular epithelial cells. T cells from kidneys of 1K/DOCA/salt-treated mice produced interferon-γ upon ex vivo stimulation with IL-18, whereas those from 1K/placebo mice did not. In conclusion, IL-18 production by tubular epithelial cells contributes to elevated blood pressure, renal inflammation, and fibrosis in 1K/DOCA/salt-treated mice, highlighting it as a promising therapeutic target for hypertension and kidney disease.


Asunto(s)
Células Epiteliales/metabolismo , Hipertensión/fisiopatología , Inflamación/metabolismo , Interleucina-18/metabolismo , Enfermedades Renales/metabolismo , Albuminuria/inducido químicamente , Albuminuria/genética , Albuminuria/metabolismo , Animales , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Acetato de Desoxicorticosterona , Hipertensión/inducido químicamente , Hipertensión/genética , Inflamación/genética , Interleucina-18/genética , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Túbulos Renales/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Br J Pharmacol ; 178(19): 3849-3863, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33948934

RESUMEN

As an agonist of the classical nuclear receptors, estrogen receptor-α and -ß (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.


Asunto(s)
Enfermedades Cardiovasculares , Receptores de Estrógenos , Enfermedades Cardiovasculares/tratamiento farmacológico , Receptor alfa de Estrógeno , Estrógenos , Femenino , Proteínas de Unión al GTP , Humanos , Masculino , Receptores de Estrógenos/metabolismo
14.
Cardiovasc Res ; 117(3): 960-970, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32215568

RESUMEN

AIMS: The G protein-coupled estrogen receptor 1 (GPER) may modulate some effects of aldosterone. In addition, G-1 (a GPER agonist) can lower blood pressure (BP) and promote T cell-mediated anti-inflammatory responses. This study aimed to test the effects of G-1 and G-15 (a GPER antagonist) on aldosterone-induced hypertension in mice and to examine the cellular mechanisms involved. METHODS AND RESULTS: C57Bl/6 (wild-type, WT), RAG1-deficient and GPER-deficient mice were infused with vehicle, aldosterone (0.72 mg/kg/day S.C. plus 0.9% NaCl for drinking) ± G-1 (0.03 mg/kg/day S.C.) ± G-15 (0.3 mg/kg/day S.C.) for 14 days. G-1 attenuated aldosterone-induced hypertension in male WT but not male GPER-deficient mice. G-15 alone did not alter hypertension but it prevented the anti-hypertensive effect of G-1. In intact female WT mice, aldosterone-induced hypertension was markedly delayed and suppressed compared with responses in males, with BP remaining unchanged until after Day 7. In contrast, co-administration of aldosterone and G-15 fully increased BP within 7 days in WT females. Similarly, aldosterone robustly increased BP by Day 7 in ovariectomized WT females, and in both sexes of GPER-deficient mice. Whereas aldosterone had virtually no effect on BP in RAG1-deficient mice, adoptive transfer of T cells from male WT or male GPER-deficient mice into male RAG1-deficient mice restored the pressor response to aldosterone. This pressor effect could be attenuated by G-1 in RAG1-deficient mice that were reconstituted with either WT or GPER-deficient T cells, suggesting that G-1 does not act via T cells to lower BP. CONCLUSION: Our findings indicate that although aldosterone-induced hypertension is largely mediated by T cells, it can be attenuated by activation of GPER on non-T cells, which accounts for the sex difference in sensitivity to the pressor effect.


Asunto(s)
Aldosterona , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Ciclopentanos/farmacología , Hipertensión/metabolismo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Linfocitos T/metabolismo , Animales , Benzodioxoles/farmacología , Modelos Animales de Enfermedad , Antagonistas de Estrógenos/farmacología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hipertensión/inducido químicamente , Hipertensión/inmunología , Hipertensión/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ovariectomía , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores Sexuales , Transducción de Señal , Linfocitos T/inmunología
15.
Proc Natl Acad Sci U S A ; 117(40): 24964-24973, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958663

RESUMEN

Influenza A virus (IAV) infection during pregnancy causes severe maternal and perinatal complications, despite a lack of vertical transmission of IAV across the placenta. Here, we demonstrate a significant alteration in the maternal vascular landscape that underpins the maternal and downstream fetal pathology to IAV infection in mice. In IAV infection of nonpregnant mice, the local lung inflammatory response was contained to the lungs and was self-resolving, whereas in pregnant mice, virus dissemination to major maternal blood vessels, including the aorta, resulted in a peripheral "vascular storm," with elevated proinflammatory and antiviral mediators and the influx of Ly6Clow and Ly6Chigh monocytes, plus neutrophils and T cells. This vascular storm was associated with elevated levels of the adhesion molecules ICAM and VCAM and the pattern-recognition receptors TLR7 and TLR9 in the vascular wall, resulting in profound vascular dysfunction. The sequalae of this IAV-driven vascular storm included placental growth retardation and intrauterine growth restriction, evidence of placental and fetal brain hypoxia, and increased circulating cell free fetal DNA and soluble Flt1. In contrast, IAV infection in nonpregnant mice caused no obvious alterations in endothelial function or vascular inflammation. Therefore, IAV infection during pregnancy drives a significant systemic vascular alteration in pregnant dams, which likely suppresses critical blood flow to the placenta and fetus. This study in mice provides a fundamental mechanistic insight and a paradigm into how an immune response to a respiratory virus, such as IAV, is likely to specifically drive maternal and fetal pathologies during pregnancy.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Innata/genética , Inflamación/genética , Virus de la Influenza A/genética , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Femenino , Feto/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/virología , Glicoproteínas de Membrana/genética , Ratones , Monocitos/metabolismo , Monocitos/patología , Placenta/irrigación sanguínea , Placenta/inmunología , Placenta/virología , Embarazo , Linfocitos T/inmunología , Linfocitos T/virología , Receptor Toll-Like 7/genética , Receptor Toll-Like 9/genética
16.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32795101

RESUMEN

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Asunto(s)
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Miocardio/metabolismo , Análisis de la Célula Individual , Estrés Fisiológico , Animales , Cardiomegalia/patología , Fibroblastos/patología , Fibrosis , Ratones , Miocardio/patología , Pirofosfatasas/metabolismo , Trombospondinas/metabolismo
17.
Sci Rep ; 10(1): 9714, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546814

RESUMEN

The complex ergot alkaloids, ergovaline and ergotamine, cause dysregulation of physiological functions, characterised by vasoconstriction as well as thermoregulatory and cardiovascular effects in grazing livestock. To assess the effect of the mycotoxins, blood pressure and heart rate of male mice were measured, and metabolite profiling undertaken to determine relative abundances of both ergotamine and its metabolic products in body and brain tissue. Ergotamine showed similar cardiovascular effects to ergovaline, causing elevations in blood pressure and reduced heart rate. Bradycardia was preserved at low-levels of ergovaline despite no changes in blood pressure. Ergotamine was identified in kidney, liver and brainstem but not in other regions of the brain, which indicates region-specific effects of the toxin. The structural configuration of two biotransformation products of ergotamine were determined and identified in the liver and kidney, but not the brain. Thus, the dysregulation in respiratory, thermoregulatory, cardiac and vasomotor function, evoked by ergot alkaloids in animals observed in various studies, could be partially explained by dysfunction in the autonomic nervous system, located in the brainstem.


Asunto(s)
Alcaloides de Claviceps/metabolismo , Alcaloides de Claviceps/toxicidad , Micotoxinas/toxicidad , Alimentación Animal/análisis , Animales , Presión Sanguínea/efectos de los fármacos , Alcaloides de Claviceps/química , Ergotamina/metabolismo , Ergotamina/farmacología , Ergotamina/toxicidad , Ergotaminas/metabolismo , Ergotaminas/farmacología , Ergotaminas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Micotoxinas/metabolismo , Micotoxinas/farmacología , Toxinas Biológicas/farmacología , Vasoconstricción/efectos de los fármacos
18.
Front Pharmacol ; 11: 148, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194403

RESUMEN

Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.

19.
Circulation ; 141(17): 1393-1403, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32093510

RESUMEN

BACKGROUND: High blood pressure (BP) continues to be a major, poorly controlled but modifiable risk factor for cardiovascular death. Among key Western lifestyle factors, a diet poor in fiber is associated with prevalence of high BP. The impact of lack of prebiotic fiber and the associated mechanisms that lead to higher BP are unknown. Here we show that lack of prebiotic dietary fiber leads to the development of a hypertensinogenic gut microbiota, hypertension and its complications, and demonstrate a role for G-protein coupled-receptors (GPCRs) that sense gut metabolites. METHODS: One hundred seventy-nine mice including C57BL/6J, gnotobiotic C57BL/6J, and knockout strains for GPR41, GPR43, GPR109A, and GPR43/109A were included. C57BL/6J mice were implanted with minipumps containing saline or a slow-pressor dose of angiotensin II (0.25 mg·kg-1·d-1). Mice were fed diets lacking prebiotic fiber with or without addition of gut metabolites called short-chain fatty acids ([SCFA)] produced during fermentation of prebiotic fiber in the large intestine), or high prebiotic fiber diets. Cardiac histology and function, BP, sodium and potassium excretion, gut microbiome, flow cytometry, catecholamines and methylation-wide changes were determined. RESULTS: Lack of prebiotic fiber predisposed mice to hypertension in the presence of a mild hypertensive stimulus, with resultant pathological cardiac remodeling. Transfer of a hypertensinogenic microbiota to gnotobiotic mice recapitulated the prebiotic-deprived hypertensive phenotype, including cardiac manifestations. Reintroduction of SCFAs to fiber-depleted mice had protective effects on the development of hypertension, cardiac hypertrophy, and fibrosis. The cardioprotective effect of SCFAs were mediated via the cognate SCFA receptors GPR43/GPR109A, and modulated L-3,4-dihydroxyphenylalanine levels and the abundance of T regulatory cells regulated by DNA methylation. CONCLUSIONS: The detrimental effects of low fiber Westernized diets may underlie hypertension, through deficient SCFA production and GPR43/109A signaling. Maintaining a healthy, SCFA-producing microbiota is important for cardiovascular health.


Asunto(s)
Fibras de la Dieta/deficiencia , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Hipertensión , Mucosa Intestinal , Prebióticos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/microbiología , Hipertensión/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética
20.
J Cereb Blood Flow Metab ; 40(6): 1300-1315, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31296130

RESUMEN

Ischemic stroke is a major cause of mortality and long-term disability with limited treatment options, and a greater understanding of the gene regulatory mechanisms underlying ischemic stroke-associated neuroinflammation is required for new therapies. To study ischemic stroke in vivo, mice were subjected to sustained ischemia by intraluminal filament-induced middle cerebral artery occlusion (MCAo) for 24 h without reperfusion or transient ischemia for 30 min followed by 23.5 h reperfusion, and brain miRNA and mRNA expression changes were quantified by TaqMan OpenArrays and gene (mRNA) expression arrays, respectively. Sustained ischemia resulted in 18 significantly altered miRNAs and 392 altered mRNAs in mouse brains compared to Sham controls; however, the transient ischemic condition was found to impact only 6 miRNAs and 126 mRNAs. miR-367-3p was found to be significantly decreased in brain homogenates with sustained ischemia. G protein-coupled receptor, family C, group 5, member A (Gprc5a), a miR-367-3p target gene, was found to be significantly increased with sustained ischemia. In primary neurons, inhibition of endogenous miR-367-3p resulted in a significant increase in Gprc5a expression. Moreover, miR-367-3p was found to be co-expressed with GPRC5A in human neurons. Results suggest that loss of miR-367-3p suppression of GPRC5A may contribute to neuroinflammation associated with ischemic stroke.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Accidente Cerebrovascular Isquémico/metabolismo , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA