Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 344: 123306, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185362

RESUMEN

Wildfires that raged across Australia during the 2019-2020 'Black Summer' produced an enormous quantity of particulate matter (PM) pollution, with plumes that cloaked many urban centres and ecosystems along the eastern seaboard. This has motivated a need to understand the magnitude and nature of PM exposure, so that its impact on both built and natural environments can be more accurately assessed. Here we present the potentially toxic fingerprint of PM captured by building heating, ventilation, and air conditioning filters in Sydney, Australia during the peak of the Wildfires, and from ambient urban emissions one year later (Reference period). Atmospheric PM and meteorological monitoring data were also assessed to determine the magnitude and source of high PM exposure. The wildfires were a major source of PM pollution in Sydney, exceeding the national standards on 19 % of days between November-February. Wildfire particles were finer and more spherical compared to Reference PM, with count median diameters of 892.1 ± 23.1 versus 1484.8 ± 96.7 nm (mean ± standard error). On an equal-mass basis, differences in potentially toxic elements were predominantly due to higher SO42--S (median 20.4 vs 4.7 mg g-1) and NO3--N (2.4 vs 1.2 mg g-1) in Wildfire PM, and higher PO43--P (10.4 vs 1.4 mg g-1) in Reference PM. Concentrations of remaining elements were similar or lower than Reference PM, except for enrichments to F-, Cl-, dissolved Mn, and particulate Mn, Co and Sb. Fractional solubilities of trace elements were similar or lower than Reference PM, except for enhanced Hg (12.1 vs 1.0 %) and greater variability in Cd, Hg and Mn solubility, which displayed upper quartiles exceeding that of Reference PM. These findings contribute to our understanding of human and ecosystem exposures to the toxic components of mixed smoke plumes, especially in regions downwind of the source.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Mercurio , Humanos , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente , Material Particulado/análisis , Contaminación del Aire/análisis
2.
Toxins (Basel) ; 15(11)2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999510

RESUMEN

The cyanobacterial non-protein amino acid (AA) ß-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro. Cells were treated with 1000 µM BMAA and intracellular free AA concentrations in treated and control cells were compared at six time-points over a 48 h culture period. BMAA had a profound effect on intracellular AA levels at specific time points but in most cases, AA homeostasis was re-established in the cell. The most heavily impacted amino acid was serine which was depleted in BMAA-treated cells from 9 h onwards. Correction of serine depletion could be a factor in the observation that supplementation with L-serine protects against BMAA toxicity in vitro and in vivo. AAs that could potentially be involved in protection against BMAA-induced oxidation such as histidine, tyrosine, and phenylalanine were depleted in cells at later time points.


Asunto(s)
Aminoácidos Diaminos , Neuroblastoma , Animales , Humanos , Aminoácidos , Aminoácidos Diaminos/toxicidad , Aminoácidos Diaminos/metabolismo , Serina/farmacología , Neurotoxinas/toxicidad
3.
Molecules ; 28(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764509

RESUMEN

ß-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore, multiple analyses are required to assess the toxic load of a sample. Here, we present a newly developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-LR, MC-RR, and MC-YR using RP LC-MS/MS. Method validation was performed, assessing linearity (r2 > 0.996), accuracy (>90% recovery for spiked samples), precision (7% relative standard deviation), and limits of detection (LODs) and quantification (LOQs) (ranging from 0.13 to 1.38 ng mL-1). The application of this combined cyanotoxin analysis on a culture of Microcystis aeruginosa resulted in the simultaneous detection of 2,4-DAB (0.249 ng mg-1 dry weight (DW)) and MC-YR (4828 ng mg-1 DW). This study provides a unified method for the quantitative analysis of BMAA, its isomers, and three MC congeners in natural environmental samples.


Asunto(s)
Microcistinas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Toxinas de Cianobacterias
4.
Biol Trace Elem Res ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725314

RESUMEN

Toxic heavy metals have been the focus of many investigations into chronic kidney disease of unknown aetiology (CKDu) within Sri Lanka. It has been hypothesised that exposure to nephrotoxic arsenic, cadmium and lead could play a role in the development of CKDu, and these metals have previously been found in unsafe concentrations in Sri Lankan rice. Traditional varieties of Sri Lankan rice remain popular due to their perceived health benefits, but their uptake of trace and toxic heavy metals remained unexplored. Here, we report a one-time, cross-sectional dataset on the concentrations of essential and toxic elements present in eleven samples of polished and unpolished traditional rice varieties, all regularly grown and sold in the Anuradhapura district, a CKDu hotspot. All rice was sourced from the same farm, with the exception of one store bought sample grown on another, unidentified farm. Cadmium concentrations varied significantly between varieties, and potentially unsafe concentrations of cadmium were detected in the store-bought sample (Suwadel, 113±13 µg kg-1). Elemental imaging of the grains revealed lead to be stored mainly in the rice bran, which is removed during polishing, while cadmium was distributed in the edible portion of the grain. Essential elements were generally higher in the traditional rice varieties than those reported for non-traditional varieties and are a potential source of trace elements for nutrient-deficient communities. The concentration of selenium, an element that plays a protective role in the kidneys, was too low to provide the minimum recommended intake. The methods developed in this study could be applied to a more comprehensive study of elemental uptake of rice under controlled growing conditions.

5.
Anal Chem ; 95(5): 2909-2916, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36692449

RESUMEN

Due to the complexity of lipids in nature, the use of in silico generated spectral libraries to identify lipid species from mass spectral data has become an integral part of many lipidomic workflows. However, many in silico libraries are either limited in usability or their capacity to represent lipid species. Here, we introduce Lipid Spectrum Generator, an open-source in silico spectral library generator specifically designed to aid in the identification of lipids in liquid chromatography-tandem mass spectrometry analysis.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Biblioteca de Genes , Lípidos/análisis
6.
J Vis Exp ; (190)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36571413

RESUMEN

Non-protein amino acids (NPAAs) are a large class of amino acids (AAs) that are not genetically encoded for translation into proteins. The analysis of NPAAs can provide crucial information about cellular uptake and/or function, metabolic pathways, and potential toxicity. ß-methylamino-L-alanine (BMAA) is a neurotoxic NPAA produced by various algae species and is associated with an increased risk for neurodegenerative diseases, which has led to significant research interest. There are numerous ways to extract AAs for analysis, with liquid chromatography-tandem mass spectrometry being the most common, requiring protein precipitation followed by acid hydrolysis of the protein pellet. Studies on the presence of BMAA in algal species provide contradictory results, with the use of unvalidated sample preparation/extraction and analysis a primary cause. Like most NPAAs, protein precipitation in 10% aqueous TCA and hydrolysis with fuming HCl is the most appropriate form of extraction for BMAA and its isomers aminoethylglycine (AEG) and 2,4-diaminobutyric acid (2,4-DAB). The present protocol describes the steps in a validated NPAA extraction method commonly used in research and teaching laboratories.


Asunto(s)
Aminoácidos Diaminos , Cianobacterias , Síndromes de Neurotoxicidad , Humanos , Espectrometría de Masas en Tándem/métodos , Aminoácidos Diaminos/análisis , Aminoácidos Diaminos/química , Aminoácidos , Cromatografía Liquida/métodos , Proteínas , Cianobacterias/química
7.
Toxins (Basel) ; 14(11)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422986

RESUMEN

Microcystis aeruginosa is a widespread cyanobacteria capable of producing hepatotoxic microcystins. Understanding the environmental factors that influence its growth and toxin production is essential to managing the negative effects on freshwater systems. Some micronutrients are important cofactors in cyanobacterial proteins and can influence cyanobacterial growth when availability is limited. However, micronutrient requirements are often species specific, and can be influenced by substitution between metals or by luxury uptake. In this study, M. aeruginosa was grown in modified growth media that individually excluded some micronutrients (cobalt, copper, iron, manganese, molybdenum) to assess the effect on growth, toxin production, cell morphology and iron accumulation. M. aeruginosa growth was limited when iron, cobalt and manganese were excluded from the growth media, whereas the exclusion of copper and molybdenum had no effect on growth. Intracellular microcystin-LR concentrations were variable and were at times elevated in treatments undergoing growth limitation by cobalt. Intracellular iron was notably higher in treatments grown in cobalt-deplete media compared to other treatments possibly due to inhibition or competition for transporters, or due to irons role in detoxifying reactive oxygen species (ROS).


Asunto(s)
Cianobacterias , Microcystis , Oligoelementos , Microcystis/metabolismo , Micronutrientes/metabolismo , Micronutrientes/farmacología , Manganeso/metabolismo , Manganeso/farmacología , Cobre/farmacología , Molibdeno/metabolismo , Molibdeno/farmacología , Cobalto/metabolismo , Cobalto/farmacología
8.
Proteomes ; 10(2)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736802

RESUMEN

In the original publication, there was a mistake in Table 2 as published [...].

9.
J Chromatogr A ; 1655: 462530, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517165

RESUMEN

LC-MS/MS method development for native amino acid detection can be problematic due to low ionisation efficiencies, in source fragmentation, potential for cluster ion formation and incorrect application of chromatography techniques. This has led to the majority of the scientific community derivatising amino acids for more sensitive analysis. Derivatisation has several benefits including reduced signal-to-noise ratios, more efficient ionisation, and a change in polarity, allowing the use of reverse phase chromatography. However, derivatisation of amino acids can be expensive, requires additional sample preparation steps, is more time consuming and increases sample instability, due to the most derivatised amino acids only be stable for finite amount of time. While showing initial promise, development of reliable hydrophilic interaction liquid chromatography (HILIC) separation methods has presented difficulties for the analyst including irreproducible separation and poor sensitivity. This study aimed to find a means to improve the detection sensitivity of the 20 protein amino acids by HILIC-MS/MS. We describe the use of previously undescribed amino acid-acetonitrile (ACN) adducts to improve detection of 16 out of the 20 amino acids. While all amino acids examined did form an ACN adduct, 4 had low intensity adduct formation compared to their protonated state, 3 of which are classified as basic amino acids. For 15 of the 20 amino acids tested, we used the ACN adduct for both quantification and qualification ions and demonstrated a significant enhancement in signal-to-noise ratio, ranging from 23 to 1762% improvement. Lower LODs, LOQs and lower ranges of linearity were also achieved for these amino acids. The optimised method was applied to a human neuroblastoma cell line (SH-SY5Y) with the potential to be applied to other complex sample types. The improved sensitivity this method offers simplifies sample preparation and reduces the costs of amino acid analysis compared to those methods that rely on derivatisation for sensitivity.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Acetonitrilos , Cromatografía Liquida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
10.
Res Microbiol ; 172(6): 103852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34246779

RESUMEN

In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin ß-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 µg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.


Asunto(s)
Aminoácidos Diaminos/farmacología , Toxinas de Cianobacterias/farmacología , Cisteína/biosíntesis , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/toxicidad , Medios de Cultivo , Toxinas de Cianobacterias/metabolismo , Toxinas de Cianobacterias/toxicidad , Cisteína Sintasa/genética , Tolerancia a Medicamentos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Redes y Vías Metabólicas , Oxidación-Reducción , Estrés Oxidativo , Serina O-Acetiltransferasa/genética
11.
Amino Acids ; 53(9): 1351-1359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34283312

RESUMEN

The cyanobacterial non-protein amino acid α-amino-ß-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms. Since its discovery, BMAA toxicity has been the subject of many in vivo and in vitro studies. A number of mechanisms of toxicity have been proposed including an agonist effect at glutamate receptors, competition with cysteine for transport system xc_ and other mechanisms capable of generating cellular oxidative stress. In addition, a wide range of studies have reported effects related to disturbances in proteostasis including endoplasmic reticulum stress and activation of the unfolded protein response. In the present studies we examine the effects of BMAA on the ubiquitin-proteasome system (UPS) and on chaperone-mediated autophagy (CMA) by measuring levels of ubiquitinated proteins and lamp2a protein levels in a differentiated neuronal cell line exposed to BMAA. The BMAA induced increases in oxidised proteins and the increase in CMA activity reported could be prevented by co-administration of L-serine but not by the two antioxidants examined. These data provide further evidence of a protective role for L-serine against the deleterious effects of BMAA.


Asunto(s)
Aminoácidos Diaminos/efectos adversos , Autofagia Mediada por Chaperones , Toxinas de Cianobacterias/efectos adversos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Neuroblastoma/tratamiento farmacológico , Agregado de Proteínas/efectos de los fármacos , Serina/farmacología , Ubiquitina/metabolismo , Antioxidantes/farmacología , Diferenciación Celular , Agonistas de Aminoácidos Excitadores/efectos adversos , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Tumorales Cultivadas
12.
Proteomes ; 9(1)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494504

RESUMEN

Proteinopathies are diseases caused by factors that affect proteoform conformation. As such, a prevalent hypothesis is that the misincorporation of noncanonical amino acids into a proteoform results in detrimental structures. However, this hypothesis is missing proteomic evidence, specifically the detection of a noncanonical amino acid in a peptide sequence. This review aims to outline the current state of technology that can be used to investigate mistranslations and misincorporations whilst framing the pursuit as Misincorporation Proteomics (MiP). The current availability of technologies explored herein is mass spectrometry, sample enrichment/preparation, data analysis techniques, and the hyphenation of approaches. While many of these technologies show potential, our review reveals a need for further development and refinement of approaches is still required.

13.
Ecotoxicol Environ Saf ; 208: 111515, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33099142

RESUMEN

In order to study the toxicity of the cyanobacterial non-protein amino acids (NPAAs) L-ß-N-methylamino-L-alanine (BMAA) and its structural isomer L-2,4-diaminobutyric acid (DAB) in the forage crop plant alfalfa (Medicago sativa), seedlings were exposed to NPAA-containing media for four days. Root growth was significantly inhibited by both treatments. The content of derivatised free and protein-bound BMAA and DAB in seedlings was then analysed by LC-MS/MS. Both NPAAs were detected in free and protein-bound fractions with higher levels detected in free fractions. Compared to shoots, there was approximately tenfold more BMAA and DAB in alfalfa roots. These results suggest that NPAAs might be taken up into crop plants from contaminated irrigation water and enter the food chain. This may present an exposure pathway for NPAAs in humans.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Aminobutiratos/metabolismo , Productos Agrícolas/metabolismo , Aminoácidos Diaminos/toxicidad , Aminobutiratos/toxicidad , Bioacumulación , Cromatografía Liquida , Productos Agrícolas/efectos de los fármacos , Cianobacterias/química , Toxinas de Cianobacterias , Humanos , Isomerismo , Neurotoxinas/análisis , Plantones/química , Espectrometría de Masas en Tándem
14.
Toxins (Basel) ; 11(9)2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480725

RESUMEN

ß-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Diatomeas/metabolismo , Aminoácidos Diaminos/química , Australia , Cromatografía Liquida , Toxinas de Cianobacterias , Diatomeas/aislamiento & purificación , Isomerismo , Lagos/microbiología , Ríos/microbiología , Espectrometría de Masas en Tándem
15.
Proteomes ; 7(3)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443461

RESUMEN

The accurate quantification of changes in the abundance of proteins is one of the main applications of proteomics. The maintenance of accuracy can be affected by bias and error that can occur at many points in the experimental process, and normalization strategies are crucial to attempt to overcome this bias and return the sample to its regular biological condition, or normal state. Much work has been published on performing normalization on data post-acquisition with many algorithms and statistical processes available. However, there are many other sources of bias that can occur during experimental design and sample handling that are currently unaddressed. This article aims to cast light on the potential sources of bias and where normalization could be applied to return the sample to its normal state. Throughout we suggest solutions where possible but, in some cases, solutions are not available. Thus, we see this article as a starting point for discussion of the definition of and the issues surrounding the concept of normalization as it applies to the proteomic analysis of biological samples. Specifically, we discuss a wide range of different normalization techniques that can occur at each stage of the sample preparation and analysis process.

16.
Ecotoxicol Environ Saf ; 172: 72-81, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30682636

RESUMEN

Environmental exposure to the amino acid ß-methylamino-L-alanine (BMAA) was linked to the high incidence of neurodegenerative disease first reported on the island of Guam in the 1940s and has more recently been implicated in an increased incidence of amyotrophic lateral sclerosis (ALS) in parts of the USA. BMAA has been shown to be produced by a range of cyanobacteria and some marine diatoms and dinoflagellates in different parts of the world. BMAA is commonly found with two of its constitutional isomers: 2,4- diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl) glycine (AEG). These isomers are thought to be co-produced by the same organisms that produce BMAA and MS/MS analysis following LC separation can add an additional level of specificity over LC-FL. Although the presence of BMAA and 2,4-DAB in surface scum samples from several sites in Australia has been reported, which Australian cyanobacterial species are capable of BMAA, 2,4-DAB and AEG production remains unknown. The aims of the present studies were to identify some of the cyanobacterial genera or species that can produce BMAA, 2,4-DAB and AEG in freshwater cyanobacteria blooms in eastern Australia. Eleven freshwater sites were sampled and from these, 19 single-species cyanobacterial cultures were established. Amino acids were extracted from cyanobacterial cultures and analysed using liquid chromatography-tandem mass spectrometry. BMAA was detected in 17 of the 19 isolates, 2,4-DAB was detected in all isolates, and AEG was detected in 18 of the 19 isolates, showing the prevalence of these amino acids in Australian freshwater cyanobacteria. Concentrations of all three isomers in Australian cyanobacteria were generally higher than the concentrations reported elsewhere. This study confirmed the presence of BMAA and its isomers in cyanobacteria isolated from eastern Australian freshwater systems, and determined which Australian cyanobacterial genera or species were capable of producing them when cultured under laboratory conditions.


Asunto(s)
Aminoácidos Diaminos/análisis , Aminoácidos Diaminos/química , Cianobacterias/química , Aminoácidos/análisis , Australia , Cromatografía Liquida , Toxinas de Cianobacterias , Agua Dulce/microbiología , Glicina/análisis , Glicina/química , Isomerismo , Neurotoxinas/análisis , Neurotoxinas/química , Espectrometría de Masas en Tándem
17.
Toxicon ; 158: 51-56, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30521837

RESUMEN

Microcystin-LR (MC-LR) is a potent cyanobacterial toxin responsible for animal and human poisonings worldwide. MC-LR is found in organisms throughout the foodweb, however there is conjecture regarding whether it biomagnifies. Few studies have investigated how MC-LR interacts with lipid membranes, a determinant of biomagnification potential. We tested whether 1 µM MC-LR irreversibly associates with lipid bilayers or causes the creation of pore defects upon short and long-term exposure. Using tethered bilayer lipid membranes (tBLMs), we observed an increase in membrane conduction in tBLMs, representing an interaction of microcystin-LR with the lipid bilayer and a change in membrane packing properties. However, there were minimal changes in membrane capacitance upon short and long-term exposure, and MC-LR exhibited a rapid off-rate. Upon 24 h exposure to the toxin, no lipophilic multimeric complexes were detected capable of altering the toxin's off-rate. There was no evidence of the creation of new pores. This study demonstrates that MC-LR does not irreversibly imbed itself into lipids membranes after short or long-term exposure and suggests MC-LR does not biomagnify through the food web via lipid storage.


Asunto(s)
Membrana Dobles de Lípidos , Microcistinas/química , Lípidos/química , Toxinas Marinas , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA