Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 542(1-2): 47-55, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501738

RESUMEN

Oral administration of insulin increases patient comfort and could improve glycemic control thanks to the hepatic first passage. However, challenges remain. The current approach uses poly (d, lactic-co-glycolic) acid (PLGA) nanoparticles (NPs), an effective drug carrier system with a long acting profile. However, this system presents a bioavailability of less than 20% for insulin encapsulation. In this context, physico-chemical parameters like surface charge could play a critical role in NP uptake by the intestinal barrier. Therefore, we developed a simple method to modulate NP surface charge to test its impact on uptake in vitro and finally on NP efficiency in vivo. Various NPs were prepared in the presence (+) or absence (-) of polyvinyl alcohol (PVA), sodium dodecyl sulfate (SDS), and/or coated with chitosan chloride. In vitro internalization was tested using epithelial culture of Caco-2 or using a co-culture (Caco-2/RevHT29MTX) by flow cytometry. NPs were then administered by oral route using a pharmaceutical complex vector (100 or 250 UI/kg) in a diabetic rat model. SDS-NPs (-42 ±â€¯2 mV) were more negatively charged than -PVA-NPs (-22 ±â€¯1 mV) and chitosan-coated NPs were highly positively charged (56 ±â€¯2 mV) compared to +PVA particles (-2 ±â€¯1 mV), which were uncharged. In the Caco-2 model, NP internalization was significantly improved by using negatively charged NPs (SDS NPs) compared to using classical NPs (+PVA NPs) and chitosan-coated NPs. Finally, the efficacy of insulin SDS-NPs was demonstrated in vivo (100 or 250 UI insulin/kg) with a reduction of blood glucose levels in diabetic rats. Formulation of negatively charged NPs represents a promising approach to improve NP uptake and insulin bioavailability for oral delivery.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Nanopartículas/administración & dosificación , Dodecil Sulfato de Sodio/administración & dosificación , Animales , Disponibilidad Biológica , Glucemia/análisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapéutico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/uso terapéutico , Insulina/química , Insulina/farmacocinética , Insulina/uso terapéutico , Ácido Láctico/administración & dosificación , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/uso terapéutico , Masculino , Nanopartículas/química , Nanopartículas/uso terapéutico , Ácido Poliglicólico/administración & dosificación , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Wistar , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/farmacocinética , Dodecil Sulfato de Sodio/uso terapéutico , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...