Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 80: 105319, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35085767

RESUMEN

This study describes the within- and between-laboratory reproducibility (WLR and BLR) of a Time-to-Toxicity (TTT) approach for chemicals based on the SkinEthic™ HCE tissue construct, capable to distinguish chemicals that do not require classification for serious eye damage/eye irritation (No Cat.) from chemicals that require classification for eye irritation (Cat. 2), and serious eye damage (Cat. 1). The WLR and BLR was assessed with three participating laboratories. Each laboratory tested 40 coded chemicals in three independent runs. The predictive capacity of the method was assessed on a larger set of 150 chemicals (70 liquids and 80 solids) by combining the results of this study with the results of the test method developer. The WLR for the 20 liquids ranged from 85% to 95% with a BLR of 90%. For the 20 solids, a WLR and BLR of 100% was obtained. The test method developer obtained a WLR of 80% and 95%, based on 50 liquids and 48 solids tested in three independent runs, respectively. Regarding the predictive capacity, the SkinEthic™ HCE TTT test method identified 80.8% Cat. 1, 69.2% Cat. 2, and 74.9% No Cat. correctly. An independent peer review panel concluded that based on all available data, the relevance and reliability of the SkinEthic™ HCE TTT has been demonstrated for discriminating the three UN GHS eye hazard categories.


Asunto(s)
Epitelio Corneal/efectos de los fármacos , Irritantes/clasificación , Irritantes/toxicidad , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales , Humanos , Laboratorios , Reproducibilidad de los Resultados , Naciones Unidas
2.
Heredity (Edinb) ; 114(5): 450-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25407078

RESUMEN

RAD-tag sequencing is a promising method for conducting genome-wide evolutionary studies. However, to date, only a handful of studies empirically tested its applicability above the species level. In this communication, we use RAD tags to contribute to the delimitation of species within a diverse genus of deep-sea octocorals, Chrysogorgia, for which few classical genetic markers have proved informative. Previous studies have hypothesized that single mitochondrial haplotypes can be used to delimit Chrysogorgia species. On the basis of two lanes of Illumina sequencing, we inferred phylogenetic relationships among 12 putative species that were delimited using mitochondrial data, comparing two RAD analysis pipelines (Stacks and PyRAD). The number of homologous RAD loci decreased dramatically with increasing divergence, as >70% of loci are lost when comparing specimens separated by two mutations on the 700-nt long mitochondrial phylogeny. Species delimitation hypotheses based on the mitochondrial mtMutS gene are largely supported, as six out of nine putative species represented by more than one colony were recovered as discrete, well-supported clades. Significant genetic structure (correlating with geography) was detected within one putative species, suggesting that individuals characterized by the same mtMutS haplotype may belong to distinct species. Conversely, three mtMutS haplotypes formed one well-supported clade within which no population structure was detected, also suggesting that intraspecific variation exists at mtMutS in Chrysogorgia. Despite an impressive decrease in the number of homologous loci across clades, RAD data helped us to fine-tune our interpretations of classical mitochondrial markers used in octocoral species delimitation, and discover previously undetected diversity.


Asunto(s)
Antozoos/clasificación , ADN Mitocondrial/genética , Especiación Genética , Filogenia , Análisis de Secuencia de ADN/métodos , Animales , Sitios Genéticos , Haplotipos , Mutación INDEL , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...