Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2538, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514623

RESUMEN

Immune checkpoint inhibitors (ICI) can achieve remarkable responses in urothelial cancer (UC), which may depend on tumor microenvironment (TME) characteristics. However, the relationship between the TME, usually characterized by immune cell density, and response to ICI is unclear. Here, we quantify the TME immune cell densities and spatial relationships (SRs) of 24 baseline UC samples, obtained before pre-operative combination ICI treatment, using multiplex immunofluorescence. We describe SRs by approximating the first nearest-neighbor distance distribution with a Weibull distribution and evaluate the association between TME metrics and ipilimumab+nivolumab response. Immune cell density does not discriminate between response groups. However, the Weibull SR metrics of CD8+ T cells or macrophages to their closest cancer cell positively associate with response. CD8+ T cells close to B cells are characteristic of non-response. We validate our SR response associations in a combination ICI cohort of head and neck tumors. Our data confirm that SRs, in contrast to density metrics, are strong biomarkers of response to pre-operative combination ICIs.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de Cabeza y Cuello , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
3.
Eur Urol ; 83(4): 313-317, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35965206

RESUMEN

Cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical cystectomy is recommended for patients with muscle-invasive bladder cancer (MIBC). It has been shown that somatic deleterious mutations in ERCC2, gain-of-function mutations in ERBB2, and alterations in ATM, RB1, and FANCC are correlated with pathological response to NAC in MIBC. The objective of this study was to validate these genomic biomarkers in pretreatment transurethral resection material from an independent retrospective cohort of 165 patients with MIBC who subsequently underwent NAC and radical surgery. Patients with ypT0/Tis/Ta/T1N0 disease after surgery were defined as responders. Somatic deleterious mutations in ERCC2 were found in nine of 68 (13%) evaluable responders and two of 95 (2%) evaluable nonresponders (p = 0.009; FDR = 0.03). No correlation was observed between response and alterations in ERBB2 or in ATM, RB1, or FANCC alone or in combination. In an exploratory analysis, no additional genomic alterations discriminated between responders and nonresponders to NAC. No further associations were identified between the aforementioned biomarkers and pathological complete response (ypT0N0) after surgery. In conclusion, we observed a positive association between deleterious mutations in ERCC2 and pathological response to NAC, but not overall survival or recurrence-free survival. Other previously reported genomic biomarkers were not validated. PATIENT SUMMARY: It is currently unknown which patients will respond to chemotherapy before definitive surgery for bladder cancer. Previous studies described several gene mutations in bladder cancer that correlated with chemotherapy response. This study confirmed that patients with bladder cancer with a mutation in the ERCC2 gene often respond to chemotherapy.


Asunto(s)
Cisplatino , Neoplasias de la Vejiga Urinaria , Humanos , Terapia Neoadyuvante , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/patología , Biomarcadores de Tumor/genética , Cistectomía , Genómica , Invasividad Neoplásica , Proteína de la Xerodermia Pigmentosa del Grupo D
4.
Nature ; 603(7899): 166-173, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197630

RESUMEN

Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS-TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Pancreáticas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Combinación de Medicamentos , Sinergismo Farmacológico , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873056

RESUMEN

Preclinical models have been the workhorse of cancer research, producing massive amounts of drug response data. Unfortunately, translating response biomarkers derived from these datasets to human tumors has proven to be particularly challenging. To address this challenge, we developed TRANSACT, a computational framework that builds a consensus space to capture biological processes common to preclinical models and human tumors and exploits this space to construct drug response predictors that robustly transfer from preclinical models to human tumors. TRANSACT performs favorably compared to four competing approaches, including two deep learning approaches, on a set of 23 drug prediction challenges on The Cancer Genome Atlas and 226 metastatic tumors from the Hartwig Medical Foundation. We demonstrate that response predictions deliver a robust performance for a number of therapies of high clinical importance: platinum-based chemotherapies, gemcitabine, and paclitaxel. In contrast to other approaches, we demonstrate the interpretability of the TRANSACT predictors by correctly identifying known biomarkers of targeted therapies, and we propose potential mechanisms that mediate the resistance to two chemotherapeutic agents.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Perfilación de la Expresión Génica/métodos , Animales , Antineoplásicos/uso terapéutico , Biomarcadores Farmacológicos/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Aprendizaje Profundo , Modelos Animales de Enfermedad , Predicción/métodos , Xenoinjertos , Humanos , Modelos Teóricos
6.
Clin Cancer Res ; 27(23): 6559-6569, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34593530

RESUMEN

PURPOSE: Previously, we developed breast cancer BRCA1-like and BRCA2-like copy-number profile shrunken centroid classifiers predictive for mutation status and response to therapy, targeting homologous recombination deficiency (HRD). Therefore, we investigated BRCA1- and BRCA2-like classification in ovarian cancer, aiming to acquire classifiers with similar properties as those in breast cancer.Experimental Design: We analyzed DNA copy-number profiles of germline BRCA1- and BRCA2-mutant ovarian cancers and control tumors and observed that existing breast cancer classifiers did not sufficiently predict mutation status. Hence, we trained new shrunken centroid classifiers on this set and validated them in the independent The Cancer Genome Atlas dataset. Subsequently, we assessed BRCA1/2-like classification and obtained germline and tumor mutation and methylation status of cancer predisposition genes, among them several involved in HR repair, of 300 ovarian cancer samples derived from the consecutive cohort trial AGO-TR1 (NCT02222883). RESULTS: The detection rate of the BRCA1-like classifier for BRCA1 mutations and promoter hypermethylation was 95.6%. The BRCA2-like classifier performed less accurately, likely due to a smaller training set. Furthermore, three quarters of the BRCA1/2-like tumors could be explained by (epi)genetic alterations in BRCA1/2, germline RAD51C mutations and alterations in other genes involved in HR. Around half of the non-BRCA-mutated ovarian cancer cases displayed a BRCA-like phenotype. CONCLUSIONS: The newly trained classifiers detected most BRCA-mutated and methylated cancers and all tumors harboring a RAD51C germline mutations. Beyond that, we found an additional substantial proportion of ovarian cancers to be BRCA-like.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Femenino , Genes BRCA2 , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
7.
Front Immunol ; 12: 793964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987518

RESUMEN

Candidate immune biomarkers have been proposed for predicting response to immunotherapy in urothelial cancer (UC). Yet, these biomarkers are imperfect and lack predictive power. A comprehensive overview of the tumor immune contexture, including Tertiary Lymphoid structures (TLS), is needed to better understand the immunotherapy response in UC. We analyzed tumor sections by quantitative multiplex immunofluorescence to characterize immune cell subsets in various tumor compartments in tumors without pretreatment and tumors exposed to preoperative anti-PD1/CTLA-4 checkpoint inhibitors (NABUCCO trial). Pronounced immune cell presence was found in UC invasive margins compared to tumor and stroma regions. CD8+PD1+ T-cells were present in UC, particularly following immunotherapy. The cellular composition of TLS was assessed by multiplex immunofluorescence (CD3, CD8, FoxP3, CD68, CD20, PanCK, DAPI) to explore specific TLS clusters based on varying immune subset densities. Using a k-means clustering algorithm, we found five distinct cellular composition clusters. Tumors unresponsive to anti-PD-1/CTLA-4 immunotherapy showed enrichment of a FoxP3+ T-cell-low TLS cluster after treatment. Additionally, cluster 5 (macrophage low) TLS were significantly higher after pre-operative immunotherapy, compared to untreated tumors. We also compared the immune cell composition and maturation stages between superficial (submucosal) and deeper TLS, revealing that superficial TLS had more pronounced T-helper cells and enrichment of early TLS than TLS located in deeper tissue. Furthermore, superficial TLS displayed a lower fraction of secondary follicle like TLS than deeper TLS. Taken together, our results provide a detailed quantitative overview of the tumor immune landscape in UC, which can provide a basis for further studies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ipilimumab/uso terapéutico , Nivolumab/uso terapéutico , Linfocitos T Colaboradores-Inductores/inmunología , Urotelio/metabolismo , Anciano , Antígeno CTLA-4/antagonistas & inhibidores , Diferenciación Celular , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunoterapia , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Estructuras Linfoides Terciarias , Resultado del Tratamiento , Microambiente Tumoral , Neoplasias Urológicas , Urotelio/patología
8.
Nat Med ; 26(12): 1839-1844, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046870

RESUMEN

Preoperative immunotherapy with anti-PD1 plus anti-CTLA4 antibodies has shown remarkable pathological responses in melanoma1 and colorectal cancer2. In NABUCCO (ClinicalTrials.gov: NCT03387761 ), a single-arm feasibility trial, 24 patients with stage III urothelial cancer (UC) received two doses of ipilimumab and two doses of nivolumab, followed by resection. The primary endpoint was feasibility to resect within 12 weeks from treatment start. All patients were evaluable for the study endpoints and underwent resection, 23 (96%) within 12 weeks. Grade 3-4 immune-related adverse events occurred in 55% of patients and in 41% of patients when excluding clinically insignificant laboratory abnormalities. Eleven patients (46%) had a pathological complete response (pCR), meeting the secondary efficacy endpoint. Fourteen patients (58%) had no remaining invasive disease (pCR or pTisN0/pTaN0). In contrast to studies with anti-PD1/PD-L1 monotherapy, complete response to ipilimumab plus nivolumab was independent of baseline CD8+ presence or T-effector signatures. Induction of tertiary lymphoid structures upon treatment was observed in responding patients. Our data indicate that combined CTLA-4 plus PD-1 blockade might provide an effective preoperative treatment strategy in locoregionally advanced UC, irrespective of pre-existing CD8+ T cell activity.


Asunto(s)
Ipilimumab/administración & dosificación , Neoplasias/tratamiento farmacológico , Nivolumab/administración & dosificación , Urotelio/patología , Adulto , Anciano , Anticuerpos Monoclonales , Antineoplásicos Inmunológicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/cirugía , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Urotelio/efectos de los fármacos , Urotelio/inmunología , Urotelio/cirugía
9.
Nat Commun ; 10(1): 5034, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695042

RESUMEN

Integrative analyses that summarize and link molecular data to treatment sensitivity are crucial to capture the biological complexity which is essential to further precision medicine. We introduce Weighted Orthogonal Nonnegative parallel factor analysis (WON-PARAFAC), a data integration method that identifies sparse and interpretable factors. WON-PARAFAC summarizes the GDSC1000 cell line compendium in 130 factors. We interpret the factors based on their association with recurrent molecular alterations, pathway enrichment, cancer type, and drug-response. Crucially, the cell line derived factors capture the majority of the relevant biological variation in Patient-Derived Xenograft (PDX) models, strongly suggesting our factors capture invariant and generalizable aspects of cancer biology. Furthermore, drug response in cell lines is better and more consistently translated to PDXs using factor-based predictors as compared to raw feature-based predictors. WON-PARAFAC efficiently summarizes and integrates multiway high-dimensional genomic data and enhances translatability of drug response prediction from cell lines to patient-derived xenografts.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Genómica/métodos , Neoplasias , Medicina de Precisión/métodos , Animales , Línea Celular Tumoral/efectos de los fármacos , Biología Computacional , Modelos Animales de Enfermedad , Análisis Factorial , Humanos , Aprendizaje Automático , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Sci Transl Med ; 11(513)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597751

RESUMEN

There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Organoides/citología , Antineoplásicos/uso terapéutico , Capecitabina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Femenino , Fluorouracilo/uso terapéutico , Humanos , Irinotecán/uso terapéutico , Oxaliplatino/uso terapéutico , Estudios Prospectivos , Resultado del Tratamiento
12.
Cancer Cell ; 33(6): 1078-1093.e12, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29894693

RESUMEN

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, drug resistance is a clinical hurdle, and we poorly understand how cancer cells escape the deadly effects of PARPi without restoring the HR pathway. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors, we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism. We also found the presence of PARG-negative clones in a subset of human serous ovarian and triple-negative breast cancers. PARG depletion restores PAR formation and partially rescues PARP1 signaling. Importantly, PARG inactivation exposes vulnerabilities that can be exploited therapeutically.


Asunto(s)
Glicósido Hidrolasas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Humanos , Ratones de la Cepa 129 , Ratones Noqueados , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/efectos de los fármacos
13.
Cell Res ; 28(7): 719-729, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795445

RESUMEN

Activation of the mitogen-activated protein kinase (MAPK) pathway is frequent in cancer. Drug development efforts have been focused on kinases in this pathway, most notably on RAF and MEK. We show here that MEK inhibition activates JNK-JUN signaling through suppression of DUSP4, leading to activation of HER Receptor Tyrosine Kinases. This stimulates the MAPK pathway in the presence of drug, thereby blunting the effect of MEK inhibition. Cancers that have lost MAP3K1 or MAP2K4 fail to activate JNK-JUN. Consequently, loss-of-function mutations in either MAP3K1 or MAP2K4 confer sensitivity to MEK inhibition by disabling JNK-JUN-mediated feedback loop upon MEK inhibition. In a panel of 168 Patient Derived Xenograft (PDX) tumors, MAP3K1 and MAP2K4 mutation status is a strong predictor of response to MEK inhibition. Our findings suggest that cancers having mutations in MAP3K1 or MAP2K4, which are frequent in tumors of breast, prostate and colon, may respond to MEK inhibitors. Our findings also suggest that MAP3K1 and MAP2K4 are potential drug targets in combination with MEK inhibitors, in spite of the fact that they are encoded by tumor suppressor genes.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , MAP Quinasa Quinasa 4/genética , Quinasa 1 de Quinasa de Quinasa MAP/genética , Neoplasias de la Próstata/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Femenino , Xenoinjertos , Humanos , Mutación con Pérdida de Función , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Quinasa 1 de Quinasa de Quinasa MAP/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias de la Próstata/genética , Inhibidores de Proteínas Quinasas/farmacología
14.
Int J Cancer ; 143(7): 1764-1773, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672836

RESUMEN

Urachal cancer (UrC) is a rare but aggressive malignancy often diagnosed in advanced stages requiring systemic treatment. Although cytotoxic chemotherapy is of limited effectiveness, prospective clinical studies can hardly be conducted. Targeted therapeutic treatment approaches and potentially immunotherapy based on a biological rationale may provide an alternative strategy. We therefore subjected 70 urachal adenocarcinomas to targeted next-generation sequencing, conducted in situ and immunohistochemical analyses (including PD-L1 and DNA mismatch repair proteins [MMR]) and evaluated the microsatellite instability (MSI) status. The analytical findings were correlated with clinicopathological and outcome data and Kaplan-Meier and univariable/multivariable Cox regression analyses were performed. The patients had a mean age of 50 years, 66% were male and a 5-year overall survival (OS) of 58% and recurrence-free survival (RFS) of 45% was detected. Sequence variations were observed in TP53 (66%), KRAS (21%), BRAF (4%), PIK3CA (4%), FGFR1 (1%), MET (1%), NRAS (1%), and PDGFRA (1%). Gene amplifications were found in EGFR (5%), ERBB2 (2%), and MET (2%). We detected no evidence of MMR-deficiency (MMR-d)/MSI-high (MSI-h), whereas 10 of 63 cases (16%) expressed PD-L1. Therefore, anti-PD-1/PD-L1 immunotherapy approaches might be tested in UrC. Importantly, we found aberrations in intracellular signal transduction pathways (RAS/RAF/PI3K) in 31% of UrCs with potential implications for anti-EGFR therapy. Less frequent potentially actionable genetic alterations were additionally detected in ERBB2 (HER2), MET, FGFR1, and PDGFRA. The molecular profile strengthens the notion that UrC is a distinct entity on the genomic level with closer resemblance to colorectal than to bladder cancer.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Inestabilidad de Microsatélites , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/patología , Adulto , Anciano , Carcinoma de Células en Anillo de Sello/genética , Carcinoma de Células en Anillo de Sello/patología , Femenino , Estudios de Seguimiento , Amplificación de Genes , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Adulto Joven
15.
Artículo en Inglés | MEDLINE | ID: mdl-32914002

RESUMEN

PURPOSE: In the I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis 2), the pan-erythroblastic oncogene B inhibitor neratinib was available to all hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) subtypes and graduated in the HR-negative/HER2-positive signature. We hypothesized that neratinib response may be predicted by baseline HER2 epidermal growth factor receptor (EGFR) signaling activation/phosphorylation levels independent of total levels of HER2 or EGFR proteins. MATERIALS AND METHODS: Complete experimental and response data were available for between 130 and 193 patients. In qualifying analyses, which used logistic regression and treatment interaction analysis, 18 protein/phosphoprotein, 10 mRNA, and 12 DNA biomarkers that related to HER family signaling were evaluated. Exploratory analyses used Wilcoxon rank sum and t tests without multiple comparison correction. RESULTS: HER pathway DNA biomarkers were either low prevalence or nonpredictive. In expression biomarker analysis, only one gene (STMN1) was specifically associated with response to neratinib in the HER2-negative subset. In qualifying protein/phosphoprotein analyses that used reverse phase protein microarrays, six HER family markers were associated with neratinib response. After analysis was adjusted for HR/HER2 status, EGFR Y1173 (pEGFR) showed a significant biomarker-by-treatment interaction (P = .049). Exploratory analysis of HER family signaling in patients with triple-negative (TN) disease found that activation of EGFR Y1173 (P = .005) and HER2 Y1248 (pHER2) (P = .019) were positively associated with pathologic complete response. Exploratory analysis in this pEGFR/pHER2-activated TN subgroup identified elevated levels of estrogen receptor α (P < .006) in these patients. CONCLUSION: Activation of HER family phosphoproteins associates with response to neratinib, but only EGFR Y1173 and STMN1 appear to add value to the graduating signature. Activation of HER2 and EGFR in TN tumors may identify patients whose diseases respond to neratinib and implies that there is a subset of patients with TN disease who paradoxically exhibit HER family signaling activation and may achieve clinical benefit with neratinib; this concept must be validated in future studies.

16.
Cell Rep ; 20(1): 48-60, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683323

RESUMEN

Diffuse and uncontrollable brain invasion is a hallmark of glioblastoma (GBM), but its mechanism is understood poorly. We developed a 3D ex vivo organotypic model to study GBM invasion. We demonstrate that invading GBM cells upregulate a network of extracellular matrix (ECM) components, including multiple collagens, whose expression correlates strongly with grade and clinical outcome. We identify interferon regulatory factor 3 (IRF3) as a transcriptional repressor of ECM factors and show that IRF3 acts as a suppressor of GBM invasion. Therapeutic activation of IRF3 by inhibiting casein kinase 2 (CK2)-a negative regulator of IRF3-downregulated the expression of ECM factors and suppressed GBM invasion in ex vivo and in vivo models across a panel of patient-derived GBM cell lines representative of the main molecular GBM subtypes. Our data provide mechanistic insight into the invasive capacity of GBM tumors and identify a potential therapy to inhibit GBM invasion.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Animales , Neoplasias Encefálicas/patología , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Células Cultivadas , Matriz Extracelular/efectos de los fármacos , Glioblastoma/patología , Humanos , Factor 3 Regulador del Interferón/genética , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica
17.
Clin Genitourin Cancer ; 15(4): e563-e571, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28065418

RESUMEN

BACKGROUND: Older patients with metastatic urothelial carcinoma (UC) are under-represented in clinical trials, and data regarding outcomes for second-line therapy is limited. MATERIALS AND METHODS: Individual data for patients with metastatic UC, aged ≥ 70 years, were pooled from 10 second-line studies. The influence of potential prognostic factors on overall survival (OS) was assessed via univariate and multivariate Cox regression analysis. RESULTS: In total, 102 patients were included; the median age was 74.0 years (range, 70-88 years). Second-line chemotherapy was single-agent in 42 (41%) patients and combination regimens in 60 (59%) patients. Median progression-free and OS were 4.3 and 9.7 months, respectively. In multivariate analysis, age > 75 years, Eastern Cooperative Oncology Group performance status ≥ 1, serum hemoglobin < 10 g/dL, and non-lymph node only metastasis predicted inferior OS. Median OS for patients with 0, 1, 2, and ≥ 3 adverse factors was unreached, 15.5, 9.8, and 4.8 months, respectively (P < .001). There was no difference in OS between patients treated with single-agent or combination chemotherapy. Combination regimens were associated with higher occurrences of any ≥ grade 2 toxicity (80% vs. 38%; P < .001), ≥ grade 2 hematologic (78% vs. 12%; P < .001), and ≥ grade 2 gastrointestinal toxicity (36% vs. 7%; P < .001). CONCLUSION: In this pooled analysis of older patients with metastatic UC, combination chemotherapy for second-line treatment was associated with greater toxicity without improvement in OS. Eastern Cooperative Oncology Group performance status ≥1, serum hemoglobin < 10 g/dL, and age > 75 years predicted worse survival, whereas isolated lymph node metastasis predicted a favorable outcome.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Transicionales/tratamiento farmacológico , Neoplasias Urológicas/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Quimioterapia , Femenino , Humanos , Masculino , Metástasis de la Neoplasia , Análisis de Supervivencia , Resultado del Tratamiento
18.
Bioinformatics ; 32(17): i413-i420, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587657

RESUMEN

MOTIVATION: Clinical response to anti-cancer drugs varies between patients. A large portion of this variation can be explained by differences in molecular features, such as mutation status, copy number alterations, methylation and gene expression profiles. We show that the classic approach for combining these molecular features (Elastic Net regression on all molecular features simultaneously) results in models that are almost exclusively based on gene expression. The gene expression features selected by the classic approach are difficult to interpret as they often represent poorly studied combinations of genes, activated by aberrations in upstream signaling pathways. RESULTS: To utilize all data types in a more balanced way, we developed TANDEM, a two-stage approach in which the first stage explains response using upstream features (mutations, copy number, methylation and cancer type) and the second stage explains the remainder using downstream features (gene expression). Applying TANDEM to 934 cell lines profiled across 265 drugs (GDSC1000), we show that the resulting models are more interpretable, while retaining the same predictive performance as the classic approach. Using the more balanced contributions per data type as determined with TANDEM, we find that response to MAPK pathway inhibitors is largely predicted by mutation data, while predicting response to DNA damaging agents requires gene expression data, in particular SLFN11 expression. AVAILABILITY AND IMPLEMENTATION: TANDEM is available as an R package on CRAN (for more information, see http://ccb.nki.nl/software/tandem). CONTACT: m.michaut@nki.nl or l.wessels@nki.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Daño del ADN , Sistemas de Liberación de Medicamentos , Perfilación de la Expresión Génica , Mutación , Línea Celular , Dosificación de Gen , Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
19.
Cell ; 166(3): 740-754, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27397505

RESUMEN

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Análisis de Varianza , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos/genética , Dosificación de Gen , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión
20.
Nat Med ; 22(5): 464-71, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27149219

RESUMEN

Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance the diagnosis, prognostication and treatment of cancer. A critical point has now been reached at which the analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers to data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data-aggregation challenges faced by the field, suggests potential collaborative solutions and describes how GA4GH can catalyze a harmonized data-sharing culture.


Asunto(s)
Genoma , Difusión de la Información , Neoplasias/genética , Biología Computacional , Cultura , Bases de Datos Genéticas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...