Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Genome Med ; 15(1): 82, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828555

RESUMEN

BACKGROUND: Prostate cancer (PrCa) genomic heterogeneity causes resistance to therapies such as androgen deprivation. Such heterogeneity can be deciphered in the context of evolutionary principles, but current clinical trials do not include evolution as an essential feature. Whether or not analysis of genomic data in an evolutionary context in primary prostate cancer can provide unique added value in the research and clinical domains remains an open question. METHODS: We used novel processing techniques to obtain whole genome data together with 3D anatomic and histomorphologic analysis in two men (GP5 and GP12) with high-risk PrCa undergoing radical prostatectomy. A total of 22 whole genome-sequenced sites (16 primary cancer foci and 6 lymph node metastatic) were analyzed using evolutionary reconstruction tools and spatio-evolutionary models. Probability models were used to trace spatial and chronological origins of the primary tumor and metastases, chart their genetic drivers, and distinguish metastatic and non-metastatic subclones. RESULTS: In patient GP5, CDK12 inactivation was among the first mutations, leading to a PrCa tandem duplicator phenotype and initiating the cancer around age 50, followed by rapid cancer evolution after age 57, and metastasis around age 59, 5 years prior to prostatectomy. In patient GP12, accelerated cancer progression was detected after age 54, and metastasis occurred around age 56, 3 years prior to prostatectomy. Multiple metastasis-originating events were identified in each patient and tracked anatomically. Metastasis from prostate to lymph nodes occurred strictly ipsilaterally in all 12 detected events. In this pilot, metastatic subclone content analysis appears to substantially enhance the identification of key drivers. Evolutionary analysis' potential impact on therapy selection appears positive in these pilot cases. CONCLUSIONS: PrCa evolutionary analysis allows tracking of anatomic site of origin, timing of cancer origin and spread, and distinction of metastatic-capable from non-metastatic subclones. This enables better identification of actionable targets for therapy. If extended to larger cohorts, it appears likely that similar analyses could add substantial biological insight and clinically relevant value.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/uso terapéutico , Medicina de Precisión , Prostatectomía/métodos , Oncogenes
2.
Endocr Relat Cancer ; 30(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140987

RESUMEN

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq). First, we showed that patient-to-patient variability accounted for most of the variance in lncRNA expression between the samples, suggesting that genomic alterations in the samples are the main drivers of lncRNA expression in PCa metastasis. Subsequently, we identified 27 lncRNAs with differential expression (DE-lncRNAs) between metastases and corresponding primary tumors, suggesting that they are mCRPC-specific lncRNAs. Analyses of potential regulation by transcription factors (TFs) revealed that approximately half of the DE-lncRNAs have at least one binding site for the androgen receptor in their regulatory regions. In addition, TF enrichment analysis revealed the enrichment of binding sites for PCa-associated TFs, such as FOXA1 and HOXB13, in the regulatory regions of the DE-lncRNAs. In a cohort of prostatectomy-treated prostate tumors, four of the DE-lncRNAs showed association with progression-free time and two of them (lnc-SCFD2-2 and lnc-R3HCC1L-8) were independent prognostic markers. Our study highlights several mCRPC-specific lncRNAs that might be important in the progression of the disease to the metastatic stage and may also serve as potential biomarkers for aggressive PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , ARN Largo no Codificante , Humanos , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Próstata/metabolismo , Regulación Neoplásica de la Expresión Génica
3.
Endocr Relat Cancer ; 29(12): 717-733, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219867

RESUMEN

Prostate cancer research suffers from the lack of suitable models to study the role of normal cells in prostate carcinogenesis. To address this challenge, we developed a cell line model mimicking luminal prostate epithelial cells by modifying the immortalized prostate epithelial cell line RWPE-1 to constitutively express the androgen receptor (AR). RWPE-1-AR cells express known AR target genes, and exhibit coexpression of luminal and basal markers characteristic of transient amplifying cells, and an RNA signature resembling prostate luminal progenitor cells. Under unstimulated conditions, constitutive AR expression does not have a biologically significant effect on the proliferation of RWPE-1 cells, but when stimulated by androgens, growth is retarded. The transcriptional response of RWPE-1-AR cells to androgen stimulation involves suppression of the growth-related KRAS pathway and is thus markedly different from that of the prostate cancer cell line LNCaP and its derivative AR-overexpressing LNCaP-ARhi cells, in which growth- and cancer-related pathways are upregulated. Hence, the nonmalignant AR-positive RWPE-1-AR cell line model could be used to study the transformation of the prostate epithelium.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Andrógenos/metabolismo , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata/metabolismo , Células Epiteliales/metabolismo , Línea Celular , Línea Celular Tumoral
5.
Oncogenesis ; 11(1): 11, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228520

RESUMEN

miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo. We studied transgenic mice expressing MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate and discovered that transgenic overexpression of miR-32 resulted in increased tumor burden as well as a more aggressive tumor phenotype in this model. Elevated expression of miR-32 increased proliferation as assessed by Ki-67 immunohistochemistry, increased nuclear density, and higher mitotic index in the tumors. By gene expression analysis of the tumorous prostate tissue, we confirmed earlier findings that miR-32 expression regulates prostate secretome by modulating expression levels of several PC-related target genes such as Spink1, Spink5, and Msmb. Further, we identified Pdk4 as a tumor-associated miR-32 target in the mouse prostate. Expression analysis of PDK4 in human PC reveals an inverse correlation with miR-32 expression and Gleason score, a decrease in castration-resistant and metastatic tumors compared to untreated primary PC, and an association of low PDK4 expression with a shorter recurrence-free survival of patients. Although decreased PDK4 expression induces the higher metabolic activity of PC cells, induced expression of PDK4 reduces both mitotic respiration and glycolysis rates as well as inhibits cell growth. In conclusion, we show that miR-32 promotes MYC-induced prostate adenocarcinoma and identifies PDK4 as a PC-relevant metabolic target of miR-32-3p.

6.
Heliyon ; 8(1): e08762, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35128089

RESUMEN

Histological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of three-dimensional context of the tissue. Yet, the tissue context and spatial determinants are critical in several pathologies, such as in understanding growth patterns of cancer in its local environment. Here, we develop computational methods for visualization and quantitative assessment of histopathological alterations in three dimensions. First, we reconstruct the 3D representation of the whole organ from serial sectioned tissue. Then, we proceed to analyze the histological characteristics and regions of interest in 3D. As our example cases, we use whole slide images representing hematoxylin-eosin stained whole mouse prostates in a Pten+/- mouse prostate tumor model. We show that quantitative assessment of tumor sizes, shapes, and separation between spatial locations within the organ enable characterizing and grouping tumors. Further, we show that 3D visualization of tissue with computationally quantified features provides an intuitive way to observe tissue pathology. Our results underline the heterogeneity in composition and cellular organization within individual tumors. As an example, we show how prostate tumors have nuclear density gradients indicating areas of tumor growth directions and reflecting varying pressure from the surrounding tissue. The methods presented here are applicable to any tissue and different types of pathologies. This work provides a proof-of-principle for gaining a comprehensive view from histology by studying it quantitatively in 3D.

7.
Clin Genitourin Cancer ; 20(3): e217-e226, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35151601

RESUMEN

BACKGROUND: Intraductal carcinoma and cribriform (IDC/C) tumor features are well-established prognosticators of biochemical recurrence (BCR), metastasis, and prostate cancer (PCa)-specific mortality. However, approximately 70% of PCa patients undergoing a radical prostatectomy are IDC/C negative, yet up-to 20% of these patients progress and experience BCR. Thus, tumor histopathologic characteristics such as IDC/C alone are limited in their ability to predict disease progression. Conversely, several nomograms such as Cancer of the Prostate Risk Assessment-Surgery (CAPRA-S) have been developed to aid in the prognostication of BCR, but not yet widely applied in clinical settings. MATERIALS AND METHODS: In this study, we assessed the combined prognostic utility of IDC/C, and CAPRA-S for BCR in 3 PCa patient cohorts. RESULTS: CAPRA-S+IDC/C improved the predictive accuracy of BCR in all 3 cohorts (P < .001). Specifically, among IDC/C negative cases, CAPRA-S improved the prognostication of BCR in low-risk (Cohort 1; P < .001, Cohort 2; P < .001, Cohort 3; P = .003), intermediate (Cohort 1; P < .001, Cohort 2; P = .006, Cohort 3; P = .03) and high-risk (Cohort 1-3; P < .001) patients. Conversely, IDC/C improved the prognostication of BCR among CAPRA-S low-risk (Cohorts 1; P < .001 and Cohort 3; P = .003) patients. CONCLUSION: Our results suggest the investigation of histopathological IDC/C features in CAPRA-S low-risk patients and conversely, nomogram CAPRA-S among IDC/C negative patients improves the identification of patients likely to experience BCR, which would otherwise be missed through current assessment regimens. These patients can be offered more intensive monitoring and adjuvant therapies upfront to circumvent the development of recurrent cancer or overtreatment at the time of surgery.


Asunto(s)
Carcinoma Intraductal no Infiltrante , Neoplasias de la Próstata , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Intraductal no Infiltrante/cirugía , Humanos , Masculino , Recurrencia Local de Neoplasia/patología , Antígeno Prostático Específico , Prostatectomía/métodos , Neoplasias de la Próstata/patología , Medición de Riesgo/métodos
8.
Oncogene ; 40(27): 4567-4579, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34127815

RESUMEN

Treatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells. In addition to several expected AR coregulators, the chromatome contained many nuclear proteins not previously associated with the AR. In the context of androgen signaling in CRPC cells, we further investigated the role of a known AR-associated protein, a chromatin remodeler SMARCA4 and that of SIM2, a transcription factor without a previous association with AR. To understand their role in chromatin accessibility and AR target gene expression, we integrated data from ChIP-seq, RNA-seq, ATAC-seq and functional experiments. Despite the wide co-occurrence of SMARCA4 and AR on chromatin, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, especially those involved in cell morphogenetic changes in epithelial-mesenchymal transition. The depletion also inhibited the CRPC cell growth, validating SMARCA4's functional role in CRPC cells. Although silencing of SIM2 reduced chromatin accessibility similarly, it affected the expression of a much larger group of androgen-regulated genes, including those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of CRPC cells and tumor size in chick embryo chorioallantoic membrane assay, further emphasizing the importance of SIM2 in CRPC cells and pointing to the functional relevance of this potential prostate cancer biomarker in CRPC cells. Overall, the chromatome of AR identified in this work is an important resource for the field focusing on this important drug target.


Asunto(s)
Receptores Androgénicos , Animales , Embrión de Pollo , Masculino , Próstata , Proteómica
9.
Cancer Med ; 10(10): 3427-3436, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33932111

RESUMEN

The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration-resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis. In addition, we analyzed data from publicly available mRNA expression and chromatin immunoprecipitation sequencing (ChIP-Seq) datasets. Our data demonstrated that PIM expression levels are significantly elevated in PCa compared to benign samples. Strikingly, the expression of both PIM1 and PIM2 was further increased in CRPC compared to PCa. We also demonstrated a significant association between upregulated PIM family members and both the ERG and MYC oncoproteins. Interestingly, ERG directly binds to the regulatory regions of all PIM genes and upregulates their expression. Furthermore, ERG suppression with siRNA reduced the expression of PIM in PCa cells. These results provide evidence for cooperation of PIM and the MYC and ERG oncoproteins in PCa development and progression and may help to stratify suitable patients for PIM-targeted therapies.


Asunto(s)
Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-pim-1/genética , Anciano , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Próstata/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Regulador Transcripcional ERG/genética , Regulación hacia Arriba/genética
11.
BMC Res Notes ; 13(1): 311, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611374

RESUMEN

OBJECTIVE: Plasma, but also urine sample could represent a simple liquid biopsy for ovarian cancer biomarker detection. The miRNA-200 family has been shown to be dysregulated in ovarian cancer. The aim of this study was to isolate three members of miR-200 family from tumor tissue, plasma and urine of high-grade serous ovarian cancer patients in comparison with samples from patients with benign ovarian tumors. This is a methodological pilot study of a prospective ovarian cancer patient cohort investigating the potential of liquid biopsies and the role of miRNAs in ovarian cancer treatment. RESULTS: MiR-200a, miR-200b and miR-200c were isolated from samples of nine ovarian cancer patients and seven patients with benign ovarian tumor. The most significant finding is that all three miRNAs were detectable in all sample types. Tumor tissue and plasma, but not urine analysis was able to discriminate malignant and benign samples. A correlation between the miRNA-200 expression in urine and plasma was observed in malignant samples only. Plasma and urine with respect to miRNA detection show potential according to this study, but larger studies are needed to clarify the usefulness of these liquid biopsies in ovarian cancer. TRIAL REGISTRATION: ClinicalTrials.gov NCT02758652, May 2, 2016.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , MicroARNs/metabolismo , Neoplasias Ováricas/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Carcinoma Epitelial de Ovario/sangre , Carcinoma Epitelial de Ovario/orina , Estudios de Cohortes , Femenino , Humanos , MicroARNs/sangre , MicroARNs/orina , Persona de Mediana Edad , Neoplasias Ováricas/sangre , Neoplasias Ováricas/orina , Proyectos Piloto
12.
Oncogene ; 39(30): 5241-5251, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32555329

RESUMEN

Long noncoding RNAs (lncRNAs) play pivotal roles in cancer development and progression, and some function in a highly cancer-specific manner. However, whether the cause of their expression is an outcome of a specific regulatory mechanism or nonspecific transcription induced by genome reorganization in cancer remains largely unknown. Here, we investigated a group of lncRNAs that we previously identified to be aberrantly expressed in prostate cancer (PC), called TPCATs. Our high-throughput real-time PCR experiments were integrated with publicly available RNA-seq and ChIP-seq data and revealed that the expression of a subset of TPCATs is driven by PC-specific transcription factors (TFs), especially androgen receptor (AR) and ETS-related gene (ERG). Our in vitro validations confirmed that AR and ERG regulated a subset of TPCATs, most notably for EPCART. Knockout of EPCART was found to reduce migration and proliferation of the PC cells in vitro. The high expression of EPCART and two other TPCATs (TPCAT-3-174133 and TPCAT-18-31849) were also associated with the biochemical recurrence of PC in prostatectomy patients and were independent prognostic markers. Our findings suggest that the expression of numerous PC-associated lncRNAs is driven by PC-specific mechanisms and not by random cellular events that occur during cancer development. Furthermore, we report three prospective prognostic markers for the early detection of advanced PC and show EPCART to be a functionally relevant lncRNA in PC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Factor Nuclear 3-alfa del Hepatocito/genética , Proteínas de Homeodominio/genética , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/patología , Interferencia de ARN , Receptores Androgénicos/genética , Regulador Transcripcional ERG/genética
14.
J Urol ; 204(1): 71-78, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32068491

RESUMEN

PURPOSE: Reliable molecular diagnostic tools are still unavailable for making informed treatment decisions and monitoring the response in patients with castration resistant prostate cancer. We evaluated the significance of whole blood circulating androgen receptor transcripts of full length (AR-FL) and splice variants (AR-V1, AR-V3 and AR-V7) as biomarkers of abiraterone acetate treatment resistance in patients with castration resistant prostate cancer. MATERIALS AND METHODS: After retrospective analysis in 112 prostate specimens AR-FL, AR-V1, AR-V3 and AR-V7 were evaluated in 185 serial blood samples, prospectively collected from 102 patients with castration resistant prostate cancer before and during abiraterone acetate therapy via reverse transcription quantitative polymerase chain reaction. RESULTS: AR-FL was present in all samples while AR-V1, AR-V3, AR-V7 and at least 1 of them was detected in 17%, 55%, 65% and 81% of castration resistant prostate cancer blood samples, respectively. The highest amount of AR-V1 was found in blood of patients whose response time was short and medium in comparison to extended. Patients with a higher level of AR-FL and/or AR-V1 had the shortest progression-free survival and overall survival (p <0.0001). CONCLUSIONS: Blood circulating AR-FL or AR-V1 can serve as blood based biomarkers for identification of the primary resistance to abiraterone acetate and the tool to monitor de novo resistance development during abiraterone acetate treatment.


Asunto(s)
Acetato de Abiraterona/uso terapéutico , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/sangre , Biomarcadores de Tumor/sangre , Estudios de Casos y Controles , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Supervivencia sin Progresión , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Isoformas de Proteínas/sangre , ARN/sangre , Receptores Androgénicos/genética
15.
Histol Histopathol ; 35(7): 673-680, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31660579

RESUMEN

Deregulation of fibroblast growth factor receptor (FGFR) signaling is tightly associated with numerous human malignancies, including cancer. Indeed, FGFR inhibitors are being tested as anti-tumor drugs in clinical trials. Among gliomas, FGFR3 fusions occur in IDH wild-type diffuse gliomas leading to high FGFR3 protein expression and both, FGFR3 and FGFR1, show elevated expression in aggressive ependymomas. The aim of this study was to uncover the expression of FGFR1 and FGFR3 proteins in choroid plexus tumors and to further characterize FGFR-related as well as other genetic alterations in FGFR3 expressing tumors. Expression levels of FGFR1 and FGFR3 were detected in 15 choroid plexus tumor tissues using immunohistochemistry of tissue microarrays and 6 samples were subjected to whole mount FGFR3 staining. Targeted sequencing was used for deeper molecular analysis of two FGFR3 positive cases. Moderate expression of FGFR1 or FGFR3 was evidenced in one third of the studied choroid plexus tumors. Targeted sequencing of a choroid plexus carcinoma and an atypical choroid plexus papilloma, both with moderate-to-strong FGFR3 expression, revealed lack of protein-altering mutations or fusions in FGFR1 or FGFR3, but TP53 was altered in both tumors. FGFR3 and FGFR1 proteins are expressed in a subpopulation of choroid plexus tumors. Further studies using larger cohorts of patients will allow identification of the clinicopathological implications of FGFR1 and FGFR3 expression in choroid plexus tumors.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias del Plexo Coroideo/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/biosíntesis , Proteína p53 Supresora de Tumor/biosíntesis , Neoplasias del Plexo Coroideo/patología , Femenino , Humanos , Masculino
16.
Cell Commun Signal ; 17(1): 148, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730483

RESUMEN

BACKGROUND: Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. METHODS: We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. RESULTS: Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. CONCLUSIONS: Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.


Asunto(s)
Movimiento Celular , Factores de Transcripción NFATC/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proliferación Celular , Humanos , Masculino , Espectrometría de Masas , Células PC-3 , Fosforilación , Neoplasias de la Próstata/patología , Transducción de Señal , Células Tumorales Cultivadas
17.
Eur Urol Focus ; 5(4): 561-567, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29137895

RESUMEN

BACKGROUND: A panel of four kallikrein markers (total, free, and intact prostate-specific antigen [PSA] and human kallikrein-related peptidase 2 [hK2]) improves predictive accuracy for Gleason score ≥7 (high-grade) prostate cancer among men biopsied for elevated PSA. A four-kallikrein panel model was originally developed and validated by the Dutch center of the European Randomized Study of Screening for Prostate Cancer (ERSPC). The kallikrein panel is now commercially available as 4Kscore™. OBJECTIVE: To assess whether these findings could be replicated among participants in the Finnish section of ERSPC (FinRSPC) and whether ß-microseminoprotein (MSP), a candidate prostate cancer biomarker, adds predictive value. DESIGN, SETTING, AND PARTICIPANTS: Among 4861 biopsied screening-positive participants in the first three screening rounds of FinRSPC, a case-control subset was selected that included 1632 biopsy-positive cases matched by age at biopsy to biopsy-negative controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The predictive accuracy of prespecified prediction models was compared with biopsy outcomes. RESULTS AND LIMITATIONS: Among men with PSA of 4.0-25ng/ml, 1111 had prostate cancer, 318 of whom had high-grade disease. Total PSA and age predicted high-grade cancer with an area under the curve of 0.648 (95% confidence interval [CI] 0.614-0.681) and the four-kallikrein panel increased discrimination to 0.746 (95% CI 0.717-0.774). Adding MSP to the four-kallikrein panel led to a significant (Wald test; p=0.015) but small increase (0.003) in discrimination. Limitations include a risk of verification bias among men with PSA of 3.0-3.99ng/ml and the absence of digital rectal examination results. CONCLUSIONS: These findings provide additional evidence that kallikrein markers can be used to inform biopsy decision-making. Further studies are needed to define the role of MSP. PATIENT SUMMARY: Four kallikrein markers and ß-microseminoprotein in blood improve discrimination of high-grade prostate cancer at biopsy in men with elevated prostate-specific antigen.


Asunto(s)
Calicreínas/sangre , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/patología , Proteínas de Secreción Prostática/sangre , Anciano , Biopsia , Estudios de Casos y Controles , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Valor Predictivo de las Pruebas
18.
EMBO Mol Med ; 10(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30467127

RESUMEN

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.


Asunto(s)
Reparación del ADN , Factor de Transcripción E2F1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Neoplasias de la Próstata/patología , Animales , Línea Celular , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Recombinación Homóloga , Humanos , Inmunohistoquímica , Masculino , Ratones Endogámicos BALB C , Análisis de Matrices Tisulares
20.
Br J Cancer ; 119(3): 347-356, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988112

RESUMEN

BACKGROUND: A significant subset of prostate cancer (PC) patients with a castration-resistant form of the disease (CRPC) show primary resistance to androgen receptor (AR)-targeting drugs developed against CRPC. As one explanation could be the expression of constitutively active androgen receptor splice variants (AR-Vs), our current objectives were to study AR-Vs and other AR aberrations to better understand the emergence of CRPC. METHODS: We analysed specimens from different stages of prostate cancer by next-generation sequencing and immunohistochemistry. RESULTS: AR mutations and copy number variations were detected only in CRPC specimens. Genomic structural rearrangements of AR were observed in 5/30 metastatic CRPC patients, but they were not associated with expression of previously known AR-Vs. The predominant AR-Vs detected were AR-V3, AR-V7 and AR-V9, with the expression levels being significantly higher in CRPC cases compared to prostatectomy samples. Out of 25 CRPC metastases that expressed any AR variant, 17 cases harboured expression of all three of these AR-Vs. AR-V7 protein expression was highly heterogeneous and higher in CRPC compared to hormone-naïve tumours. CONCLUSIONS: AR-V3, AR-V7 and AR-V9 are co-expressed in CRPC metastases highlighting the fact that inhibiting AR function via regions common to all AR-Vs is likely to provide additional benefit to patients with CRPC.


Asunto(s)
Hiperplasia Prostática/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Isoformas de Proteínas/genética , Receptores Androgénicos/genética , Andrógenos/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Metástasis de la Neoplasia , Próstata/metabolismo , Próstata/patología , Hiperplasia Prostática/patología , Hiperplasia Prostática/cirugía , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/cirugía , Empalme del ARN/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA