Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1210781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965561

RESUMEN

Prior observations suggest that foraminiferan protists use their reticulopodia (anastomosing pseudopodia) to alter sediment fabric by disrupting laminations of subtidal marine stromatolites, erasing the layered structures in an experimental setting. Because microbialites and foraminifera are found in non-marine settings, we hypothesized that foraminifera living in lakes could also disrupt layered microbialite fabric. With this aim and using a variety of multidisciplinary approaches, we conducted field surveys and an experiment on microbialites from Green Lake (GL; Fayetteville, New York State, United States), which has been studied as a Proterozoic ecosystem analog. The lake is meromictic and alkaline, receiving calcium sulfate-rich water in the monimolimnion; it supports a well-developed carbonate platform that provides access to living and relict microbialites. The living microbialites grow from early spring to autumn, forming a laminated mat at their surface (top ~5 mm), but a clotted or massive structure exists at depth (> ~ 1 cm). We observed a morphotype of "naked" foraminiferan-like protist in samples from GL microbialites and sediments; thus, considered the possibility of freshwater foraminiferan impact on microbialite fabric. Results of an experiment that seeded the cultured freshwater foraminifer Haplomyxa saranae onto the GL microbialite surface indicates via micro-CT scanning and anisotropy analysis that the introduced foraminifer impacted uppermost microbialite layering (n = 3 cores); those cores with an added inhibitor lacked changes in anisotropy for two of those three cores. Thus, it remains plausible that the much smaller, relatively common, native free-form reticulate protist, which we identified as Chlamydomyxa labyrinthuloides, can disrupt microbialite fabrics on sub-millimeter scales. Our observations do not exclude contributions of other possible causal factors.

2.
Appl Environ Microbiol ; 89(12): e0174423, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38014959

RESUMEN

IMPORTANCE: Low-cost and robust viral enumeration is a critical first step toward understanding the global virome. Our method is a deep drive integration providing a window into viral dark matter within aquatic ecosystems. We enumerated the viruses within Green Lake and Great Salt Lake microbialites, EPS, and water column. The entire weight of all the viruses in Green Lake and Great Salt Lake are ~598 g and ~2.2 kg, respectively.


Asunto(s)
Ecosistema , Virus , Microscopía , Análisis Costo-Beneficio , Lagos
3.
Front Microbiol ; 13: 921154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060749

RESUMEN

The surface of intertidal estuarine sediments is covered with diatom biofilms excreting exopolymeric substances (EPSs) through photosynthesis. These EPSs are highly reactive and increase sediment cohesiveness notably through organo-mineral interactions. In most sedimentary environments, EPSs are partly to fully degraded by heterotrophic bacteria in the uppermost millimeters of the sediment and so they are thought to be virtually absent deeper in the sedimentary column. Here, we present the first evidence of the preservation of EPSs and EPS-mineral aggregates in a 6-m-long sedimentary core obtained from an estuarine point bar in the Gironde Estuary. EPSs were extracted from 18 depth intervals along the core, and their physicochemical properties were characterized by (i) wet chemical assays to measure the concentrations of polysaccharides and proteins, and EPS deprotonation of functional groups, (ii) acid-base titrations, and (iii) Fourier transform infrared spectroscopy. EPS-sediment complexes were also imaged using cryo-scanning electron microscopy. EPS results were analyzed in the context of sediment properties including facies, grain size, and total organic carbon, and of metabolic and enzymatic activities. Our results showed a predictable decrease in EPS concentrations (proteins and polysaccharides) and reactivity from the surface biofilm to a depth of 0.5 m, possibly linked to heterotrophic degradation. Concentrations remained relatively low down to ca. 4.3 m deep. Surprisingly, at that depth EPSs abundance was comparable to the surface and showed a downward decrease to 6.08 m. cryo-scanning electron microscopy (Cryo-SEM) showed that the EPS complexes with sediment were abundant at all studied depth and potentially protected EPSs from degradation. EPS composition did not change substantially from the surface to the bottom of the core. EPS concentrations and acidity were anti-correlated with metabolic activity, but showed no statistical correlation with grain size, TOC, depth or enzymatic activity. Maximum EPS concentrations were found at the top of tide-dominated sedimentary sequences, and very low concentrations were found in river flood-dominated sedimentary sequences. Based on this observation, we propose a scenario where biofilm development and EPS production are maximal when (i) the point bar and the intertidal areas were the most extensive, i.e., tide-dominated sequences and (ii) the tide-dominated deposit were succeeded by rapid burial beneath sediments, potentially decreasing the probability of encounter between bacterial cells and EPSs.

4.
Geobiology ; 19(6): 642-664, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34180124

RESUMEN

Shark Bay, Western Australia, is episodically impacted by tropical cyclones. During 2015, the region was hit by a category 3 cyclone, "severe tropical cyclone Olywn," leading to the formation of a black sludge in an intertidal zone harboring microbial mats and microbialites. Upon returning to the impacted site 12 months later, the black sludge deposit was still recognizable between the microbialite columns and mucilaginous cobbles near the shoreline in the impacted area. Metatranscriptomic and organic geochemical analyses were carried out on the cyclone-derived materials and impacted microbial mat communities to unravel the structure, function, and potential preservation of these deposits following a tropical cyclone. It was found that samples derived from the black sludge contained low relative abundances of cyanobacteria but had higher proportions of heterotrophic and anaerobic microorganisms (e.g., methanogens and sulfate-reducing bacteria). Increased metabolic activity by these microorganisms (e.g., sulfate reduction and organic matter degradation) is thought to drive calcium carbonate precipitation and helps in mat preservation. Comparison of the aliphatic biomarker by gas chromatography-mass spectrometry (GC-MS) analyses showed that C25  highly branched isoprenoid (HBI) alkenes were significantly higher in the cyclone-derived materials attributed to the relocation of subtidal sediments containing HBI-producing diatom communities by the tropical cyclone. Raney nickel desulfurization of the polar fraction extracted from a mucilaginous cobble revealed sulfur-bound hopanoids and a series of benzohopanes. The presence of these compounds could be indicative of microbial matter that has been influenced by the tropical cyclone which may have caused elevated levels of water column anoxia promoting increased sulfurization of the organic matter to occur.


Asunto(s)
Cianobacterias , Tormentas Ciclónicas , Microbiota , Tiburones , Animales , Bahías
5.
Trends Microbiol ; 29(3): 204-213, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32654857

RESUMEN

Stromatolites are geobiological systems formed by complex microbial communities, and fossilized stromatolites provide a record of some of the oldest life on Earth. Microbial mats are precursors of extant stromatolites; however, the mechanisms of transition from mat to stromatolite are controversial and are still not well understood. To fully recognize the profound impact that these ecosystems have had on the evolution of the biosphere requires an understanding of modern lithification mechanisms and how they relate to the geological record. We propose here viral mechanisms in carbonate precipitation, leading to stromatolite formation, whereby viruses directly or indirectly impact microbial metabolisms that govern the transition from microbial mat to stromatolite. Finding a tangible link between host-virus interactions and changes in biogeochemical processes will provide tools to interpret mineral biosignatures through geologic time, including those on Earth and beyond.


Asunto(s)
Bacterias/metabolismo , Bacterias/virología , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Sedimentos Geológicos/análisis , Interacciones Huésped-Parásitos , Fenómenos Fisiológicos de los Virus , Virus/genética
6.
Front Microbiol ; 11: 560336, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312167

RESUMEN

Microbial mat communities possess extensive taxonomic and functional diversity, which drive high metabolic rates and rapid cycling of major elements. Modern microbial mats occurring in hypersaline environments are considered as analogs to extinct geobiological formations dating back to ∼ 3.5 Gyr ago. Despite efforts to understand the diversity and metabolic potential of hypersaline microbial mats in Shark Bay, Western Australia, there has yet to be molecular analyses at the transcriptional level in these microbial communities. In this study, we generated metatranscriptomes for the first time from actively growing mats comparing the type of mat, as well as the influence of diel and seasonal cycles. We observed that the overall gene transcription is strongly influenced by microbial community structure and seasonality. The most transcribed genes were associated with tackling the low nutrient conditions by the uptake of fatty acids, phosphorus, iron, and nickel from the environment as well as with protective mechanisms against elevated salinity conditions and to prevent build-up of ammonium produced by nitrate reducing microorganisms. A range of pathways involved in carbon, nitrogen, and sulfur cycles were identified in mat metatranscriptomes, with anoxygenic photosynthesis and chemoautotrophy using the Arnon-Buchanan cycle inferred as major pathways involved in the carbon cycle. Furthermore, enrichment of active anaerobic pathways (e.g., sulfate reduction, methanogenesis, Wood-Ljungdahl) in smooth mats corroborates previous metagenomic studies and further advocates the potential of these communities as modern analogs of ancient microbialites.

7.
Microbiome ; 8(1): 135, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938503

RESUMEN

BACKGROUND: Shark Bay, Australia, harbours one of the most extensive and diverse systems of living microbial mats that are proposed to be analogs of some of the earliest ecosystems on Earth. These ecosystems have been shown to possess a substantial abundance of uncultivable microorganisms. These enigmatic microbes, jointly coined as 'microbial dark matter' (MDM), are hypothesised to play key roles in modern microbial mats. RESULTS: We reconstructed 115 metagenome-assembled genomes (MAGs) affiliated to MDM, spanning 42 phyla. This study reports for the first time novel microorganisms (Zixibacterial order GN15) putatively taking part in dissimilatory sulfate reduction in surface hypersaline settings, as well as novel eukaryote signature proteins in the Asgard archaea. Despite possessing reduced-size genomes, the MDM MAGs are capable of fermenting and degrading organic carbon, suggesting a role in recycling organic carbon. Several forms of RuBisCo were identified, allowing putative CO2 incorporation into nucleotide salvaging pathways, which may act as an alternative carbon and phosphorus source. High capacity of hydrogen production was found among Shark Bay MDM. Putative schizorhodopsins were also identified in Parcubacteria, Asgard archaea, DPANN archaea, and Bathyarchaeota, allowing these members to potentially capture light energy. Diversity-generating retroelements were prominent in DPANN archaea that likely facilitate the adaptation to a dynamic, host-dependent lifestyle. CONCLUSIONS: This is the first study to reconstruct and describe in detail metagenome-assembled genomes (MAGs) affiliated with microbial dark matter in hypersaline microbial mats. Our data suggests that these microbial groups are major players in these systems. In light of our findings, we propose H2, ribose and CO/CO2 as the main energy currencies of the MDM community in these mat systems. Video Abstract.


Asunto(s)
Ecosistema , Metagenoma/genética , Salinidad , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Australia , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
9.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30877766

RESUMEN

Quorum sensing is a potent system of genetic control allowing phenotypes to be coordinated across localized communities. In this study, quorum sensing systems in Shark Bay microbial mats were delineated using a targeted approach analyzing whole mat extractions as well as the creation of an isolate library. A library of 165 isolates from different mat types were screened using the AHL biosensor E. coli MT102. Based on sequence identity 30 unique isolates belonging to Proteobacteria, Actinobacteria and Firmicutes were found to activate the AHL biosensor, suggesting AHLs or analogous compounds were potentially present. Several of the isolates have not been shown previously to produce signal molecules, particularly the members of the Actinobacteria and Firmicutes phyla including Virgibacillus, Halobacillius, Microbacterium and Brevibacterium. These active isolates were further screened using thin-layer chromatography (TLC) providing putative identities of AHL molecules present within the mat communities. Nine isolates were capable of producing several spots of varying sizes after TLC separation, suggesting the presence of multiple signalling molecules. This study is the first to delineate AHL-based signalling in the microbial mats of Shark Bay, and suggests quorum sensing may play a role in the ecosphysiological coordination of complex phenotypes across microbial mat communities.


Asunto(s)
Bacterias/aislamiento & purificación , Bahías/microbiología , Microbiota , Percepción de Quorum , Acil-Butirolactonas/análisis , Acil-Butirolactonas/metabolismo , Animales , Australia , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Técnicas Biosensibles , Microbiota/genética
10.
ISME J ; 12(11): 2619-2639, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29980796

RESUMEN

The functional metagenomic potential of Shark Bay microbial mats was examined for the first time at a millimeter scale, employing shotgun sequencing of communities via the Illumina NextSeq 500 platform in conjunction with defined chemical analyses. A detailed functional metagenomic profile has elucidated key pathways and facilitated inference of critical microbial interactions. In addition, 87 medium-to-high-quality metagenome-assembled genomes (MAG) were assembled, including potentially novel bins under the deep-branching archaeal Asgard group (Thorarchaetoa and Lokiarchaeota). A range of pathways involved in carbon, nitrogen, sulfur, and phosphorus cycles were identified in mat metagenomes, with the Wood-Ljungdahl pathway over-represented and inferred as a major carbon fixation mode. The top five sets of genes were affiliated to sulfate assimilation (cysNC cysNCD, sat), methanogenesis (hdrABC), Wood-Ljungdahl pathways (cooS, coxSML), phosphate transport (pstB), and copper efflux (copA). Polyhydroxyalkanoate (PHA) synthase genes were over-represented at the surface, with PHA serving as a potential storage of fixed carbon. Sulfur metabolism genes were highly represented, in particular complete sets of genes responsible for both assimilatory and dissimilatory sulfate reduction. Pathways of environmental adaptation (UV, hypersalinity, oxidative stress, and heavy metal resistance) were also delineated, as well as putative viral defensive mechanisms (core genes of the CRISPR, BREX, and DISARM systems). This study provides new metagenome-based models of how biogeochemical cycles and adaptive responses may be partitioned in the microbial mats of Shark Bay.


Asunto(s)
Metagenoma , Microbiota , Animales , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bahías , Carbono/metabolismo , Ciclo del Carbono/genética , Metagenómica , Interacciones Microbianas , Nitrógeno/metabolismo , Fósforo/metabolismo , Azufre/metabolismo
11.
PLoS One ; 12(11): e0186867, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29140980

RESUMEN

Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hypersaline lake, were characterized in terms of bacterial and archaeal diversity, biogeochemistry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial communities are growing in extreme conditions, including high salinity, high solar insolation, and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. In this study, the La Brava non-lithifying microbial mats, microbialites, and rhizome-associated concretions were compared to each other and their diversity was related to their environmental conditions. All the ecosystems revealed an unusual community where Euryarchaeota, Crenarchaeota, Acetothermia, Firmicutes and Planctomycetes were the most abundant groups, and cyanobacteria, typically an important primary producer in microbial mats, were relatively insignificant or absent. This suggests that other microorganisms, and possibly novel pathways unique to this system, are responsible for carbon fixation. Depth profiles of O2 and sulfide showed active production and respiration. The mineralogy composition was calcium carbonate (as aragonite) and increased from mats to microbialites and rhizome-associated concretions. Halite was also present. Further analyses were performed on representative microbial mats and microbialites by layer. Different taxonomic compositions were observed in the upper layers, with Archaea dominating the non-lithifying mat, and Planctomycetes the microbialite. The bottom layers were similar, with Euryarchaeota, Crenarchaeota and Planctomycetes as dominant phyla. Sequences related to Cyanobacteria were very scarce. These systems may contain previously uncharacterized community metabolisms, some of which may be contributing to net mineral precipitation. Further work on these sites might reveal novel organisms and metabolisms of biotechnological interest.


Asunto(s)
Biodiversidad , Ecosistema , Lagos/microbiología , Microbiota , Salinidad , Microbiología del Agua , Chile , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Metales/análisis , Luz Solar
12.
Astrobiology ; 17(5): 413-430, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28520472

RESUMEN

Thrombolites are buildups of carbonate that exhibit a clotted internal structure formed through the interactions of microbial mats and their environment. Despite recent advances, we are only beginning to understand the microbial and molecular processes associated with their formation. In this study, a spatial profile of the microbial and metabolic diversity of thrombolite-forming mats of Highborne Cay, The Bahamas, was generated by using 16S rRNA gene sequencing and predictive metagenomic analyses. These molecular-based approaches were complemented with microelectrode profiling and in situ stable isotope analysis to examine the dominant taxa and metabolic activities within the thrombolite-forming communities. Analyses revealed three distinctive zones within the thrombolite-forming mats that exhibited stratified populations of bacteria and archaea. Predictive metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis and carboxylic and fatty acid synthesis within the mats that had not been previously observed. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is photosynthetically induced. Together, this study provides the first look at the spatial organization of the microbial populations within Bahamian thrombolites and enables the distribution of microbes to be correlated with their activities within modern thrombolite systems. Key Words: Thrombolites-Microbial diversity-Metagenome-Stable isotopes-Microbialites. Astrobiology 17, 413-430.


Asunto(s)
Bacterias , Metagenómica , Bahamas , Sedimentos Geológicos , Isótopos , Filogenia , ARN Ribosómico 16S
13.
Sci Rep ; 7: 46160, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28397816

RESUMEN

The role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of putative niches in these systems. In the present study, high throughput amplicon sequencing was undertaken in conjunction with analysis of key biogeochemical properties of two mats (smooth and pustular) from Shark Bay, Australia. One-way analysis of similarity tests indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1%). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Pustular mats were enriched with Halobacteria and Parvarchaeota. Key metabolisms (bacterial and archaeal) were measured, and the rates of oxygen production/consumption and sulfate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic layers and was up to seven-fold higher in smooth than pustular mats. The finding of an abundance of anaerobic methanogens enriched at the surface where oxygen levels were highest, coupled with peak methane production in the oxic zone, suggests putative surface anoxic niches in these microbial mats.


Asunto(s)
Archaea/fisiología , Bahías/microbiología , Microbiota , Australia , Biodiversidad , Metano/biosíntesis , Interacciones Microbianas
14.
Front Microbiol ; 7: 1284, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27597845

RESUMEN

We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.

15.
Sci Rep ; 6: 31495, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27527125

RESUMEN

Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.


Asunto(s)
Fenómenos Químicos , Cianobacterias/metabolismo , Sedimentos Geológicos/microbiología , Compuestos Inorgánicos/metabolismo , Lagos/microbiología , Minerales/metabolismo , Compuestos Orgánicos/metabolismo , Cianobacterias/química , Utah
16.
Sci Rep ; 5: 15607, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26499760

RESUMEN

Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.


Asunto(s)
Bahías/microbiología , Microambiente Celular/fisiología , Sedimentos Geológicos/microbiología , Consorcios Microbianos/genética , Interacciones Microbianas/fisiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Australia , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Biodiversidad , Biopelículas , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Sulfuro de Hidrógeno/metabolismo , Metales/metabolismo , Fijación del Nitrógeno/fisiología , Oxígeno/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Front Microbiol ; 5: 605, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25452749

RESUMEN

Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.

18.
Int J Mol Sci ; 15(1): 850-77, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24413754

RESUMEN

Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing "non-lithifying" (Type-1) and "lithifying" (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO4(2-)-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 µm thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4- ,C6- ,oxo-C6,C7- ,C8- ,C10- ,C12- , C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state.


Asunto(s)
Bacterias/metabolismo , Sulfatos/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caseínas/química , Análisis por Conglomerados , Sistemas de Información Geográfica , Sedimentos Geológicos/microbiología , Filogenia , ARN Pequeño no Traducido/química , Sulfatos/química , Sulfito Reductasa (NADPH)/genética , Sulfito Reductasa (NADPH)/metabolismo
19.
ISME J ; 8(2): 418-29, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23924782

RESUMEN

Microbialites are organosedimentary structures that are formed through the interaction of benthic microbial communities and sediments and include mineral precipitation. These lithifying microbial mat structures include stromatolites and thrombolites. Exuma Sound in the Bahamas, and Hamelin Pool in Shark Bay, Western Australia, are two locations where significant stands of modern microbialites exist. Although prokaryotic diversity in these structures is reasonably well documented, little is known about the eukaryotic component of these communities and their potential to influence sedimentary fabrics through grazing, binding and burrowing activities. Accordingly, comparisons of eukaryotic communities in modern stromatolitic and thrombolitic mats can potentially provide insight into the coexistence of both laminated and clotted mat structures in close proximity to one another. Here we examine this possibility by comparing eukaryotic diversity based on Sanger and high-throughput pyrosequencing of small subunit ribosomal RNA (18S rRNA) genes. Analyses were based on total RNA extracts as template to minimize input from inactive or deceased organisms. Results identified diverse eukaryotic communities particularly stramenopiles, Alveolata, Metazoa, Amoebozoa and Rhizaria within different mat types at both locations, as well as abundant and diverse signatures of eukaryotes with <80% sequence similarity to sequences in GenBank. This suggests the presence of significant novel eukaryotic diversity, particularly in hypersaline Hamelin Pool. There was evidence of vertical structuring of protist populations and foraminiferal diversity was highest in bioturbated/clotted thrombolite mats of Highborne Cay.


Asunto(s)
Biodiversidad , Eucariontes/fisiología , Animales , Australia , Bahamas , Bahías/microbiología , Eucariontes/genética , Foraminíferos/genética , Sedimentos Geológicos/microbiología , ARN Ribosómico 18S/genética
20.
Proc Natl Acad Sci U S A ; 110(24): 9830-4, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716649

RESUMEN

Microbialites, which are organosedimentary structures formed by microbial communities through binding and trapping and/or in situ precipitation, have a wide array of distinctive morphologies and long geologic record. The origin of morphological variability is hotly debated; elucidating the cause or causes of microfabric differences could provide insights into ecosystem functioning and biogeochemistry during much of Earth's history. Although rare today, morphologically distinct, co-occurring extant microbialites provide the opportunity to examine and compare microbial communities that may be responsible for establishing and modifying microbialite microfabrics. Highborne Cay, Bahamas, has extant laminated (i.e., stromatolites) and clotted (i.e., thrombolites) marine microbialites in close proximity, allowing focused questions about how community composition relates to physical attributes. Considerable knowledge exists about prokaryotic composition of microbialite mats (i.e., stromatolitic and thrombolitic mats), but little is known about their eukaryotic communities, especially regarding heterotrophic taxa. Thus, the heterotrophic eukaryotic communities of Highborne stromatolites and thrombolites were studied. Here, we show that diverse foraminiferal communities inhabit microbialite mat surfaces and subsurfaces; thecate foraminifera are relatively abundant in all microbialite types, especially thrombolitic mats; foraminifera stabilize grains in mats; and thecate reticulopod activities can impact stromatolitic mat lamination. Accordingly, and in light of foraminiferal impacts on modern microbialites, our results indicate that the microbialite fossil record may reflect the impact of the radiation of these protists.


Asunto(s)
Ecosistema , Foraminíferos/crecimiento & desarrollo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Bahamas , Monitoreo del Ambiente , Foraminíferos/clasificación , Foraminíferos/genética , Fósiles , Microscopía Confocal , Datos de Secuencia Molecular , Densidad de Población , ARN Ribosómico 18S/genética , Agua de Mar/química , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Especificidad de la Especie , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA