Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258975

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the United States, with a median survival period of approximately 10 months. There is an urgent need for the development of effective targeted therapies for the treatment of HCC. Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) signaling is implicated in the progression of many cancers, although its specific contribution to the progression of HCC is not yet well understood. Analysis of TCGA HCC gene expression data sets and immunohistochemistry analysis of HCC tissue microarray revealed that HCC tumors had elevated expression of PELP1 compared to normal tissues, and high expression of PELP1 is associated with unfavorable survival outcomes. Suppression of PELP1 expression using shRNA significantly reduced the cell viability, clonogenicity, and invasion of HCC cells. Importantly, SMIP34, a first-in-class small molecule inhibitor targeting PELP1, effectively decreased the cell viability, clonogenic survival and invasiveness of HCC cells. Gene expression analysis using RNA-seq revealed that PELP1-knockdown (KD) cells exhibited a decrease in c-Myc, E2F, and other oncogenic pathways related to HCC. Mechanistic studies showed that SMIP34 treatment impaired the Rix complex, a critical component of ribosomal biogenesis, in HCC cells. Further, the knockdown or pharmacological inhibition of PELP1 significantly decelerated the HCC tumor growth in xenograft models. In summary, our study findings indicate that PELP1 could serve as a promising target for therapeutic intervention in HCC.

2.
Mol Carcinog ; 63(10): 2026-2039, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38990091

RESUMEN

Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.


Asunto(s)
Carboplatino , Cisplatino , Resistencia a Antineoplásicos , Histona Demetilasas , Neoplasias Ováricas , Paclitaxel , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Femenino , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Paclitaxel/farmacología , Cisplatino/farmacología , Carboplatino/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Hidrazinas , Sulfonamidas
3.
ACS Pharmacol Transl Sci ; 7(7): 2023-2043, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022350

RESUMEN

Estrogen receptor coregulator binding modulators (ERXs) are a novel class of molecules targeting the interaction between estrogen receptor α (ERα) and its coregulator proteins, which has proven to be an attractive strategy for overcoming endocrine resistance in breast cancer. We previously reported ERX-11, an orally bioavailable tris-benzamide, that demonstrated promising antitumor activity against ERα-positive breast cancer cells. To comprehend the significance of the substituents in ERX-11, we carried out structure-activity relationship studies. In addition, we introduced additional alkyl substituents at either the N- or C-terminus to improve binding affinity and biological activity. Further optimization guided by conformational restriction led to the identification of a trans-4-phenylcyclcohexyl group at the C-terminus (18h), resulting in a greater than 10-fold increase in binding affinity and cell growth inhibition potency compared to ERX-11. Tris-benzamide 18h disrupted the ERα-coregulator interaction and inhibited the ERα-mediated transcriptional activity. It demonstrated strong antiproliferative activity on ERα-positive breast cancer cells both in vitro and in vivo, offering a promising potential as a therapeutic candidate for treating ERα-positive breast cancer.

4.
NPJ Precis Oncol ; 8(1): 118, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789520

RESUMEN

Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.

6.
Cancers (Basel) ; 16(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38339252

RESUMEN

Ovarian cancer (OCa) is the most lethal form of gynecologic cancer, and the tumor heterogeneities at the molecular, cellular, and tissue levels fuel tumor resistance to standard therapies and pose a substantial clinical challenge. Here, we tested the hypothesis that the heightened basal endoplasmic reticulum stress (ERS) observed in OCa represents an exploitable vulnerability and may overcome tumor heterogeneity. Our recent studies identified LIPA as a novel target to induce ERS in cancer cells using the small molecule ERX-41. However, the role of LIPA and theutility of ERX-41 to treat OCa remain unknown. Expression analysis using the TNMplot web tool, TCGA data sets, and immunohistochemistry analysis using a tumor tissue array showed that LIPA is highly expressed in OCa tissues, compared to normal tissues. ERX-41 treatment significantly reduced the cell viability and colony formation ability and promoted the apoptosis of OCa cells. Mechanistic studies revealed a robust and consistent induction of ERS markers, including CHOP, elF2α, PERK, and ATF4, upon ERX-41 treatment. In xenograft and PDX studies, ERX-41 treatment resulted in a significant reduction in tumor growth. Collectively, our results suggest that ERX-41 is a novel therapeutic agent that targets the LIPA with a unique mechanism of ERS induction, which could be exploited to treat heterogeneity in OCa.

7.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139260

RESUMEN

Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.


Asunto(s)
Neoplasias Endometriales , Transducción de Señal , Humanos , Femenino , Receptores OSM-LIF/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Neoplasias Endometriales/tratamiento farmacológico
8.
Mol Oncol ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37853941

RESUMEN

Endometrial carcinoma (ECa) is the fourth most common cancer among women. The oncogene PELP1 is frequently overexpressed in a variety of cancers, including ECa. We recently generated SMIP34, a small-molecule inhibitor of PELP1 that suppresses PELP1 oncogenic signaling. In this study, we assessed the effectiveness of SMIP34 in treating ECa. Treatment of established and primary patient-derived ECa cells with SMIP34 resulted in a significant reduction of cell viability, colony formation ability, and induction of apoptosis. RNA-seq analyses showed that SMIP34-regulated genes were negatively correlated with ribosome biogenesis and eukaryotic translation pathways. Mechanistic studies showed that the Rix complex, which is essential for ribosomal biogenesis, is disrupted upon SMIP34 binding to PELP1. Biochemical assays confirmed that SMIP34 reduced ribosomal biogenesis and new protein synthesis. Further, SMIP34 enhanced the efficacy of mTOR inhibitors in reducing viability of ECa cells. SMIP34 is also effective in reducing cell viability in ECa organoids in vitro and explants ex vivo. Importantly, SMIP34 treatment resulted in a significant reduction of the growth of ECa xenografts. Collectively, these findings underscore the potential of SMIP34 in treating ECa.

9.
Cancer Lett ; 575: 216383, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37714256

RESUMEN

Ovarian cancer (OCa) is the most lethal gynecologic cancer. Emerging data indicates that estrogen receptor beta (ERß) functions as a tumor suppressor in OCa. Lysine-specific histone demethylase 1A (KDM1A) is an epigenetic modifier that acts as a coregulator for steroid hormone receptors. However, it remain unknown if KDM1A interacts with ERß and regulates its expression/functions in OCa. Analysis of TCGA data sets indicated KDM1A and ERß expression showed an inverse relationship in OCa. Knockout (KO), knockdown (KD), or inhibition of KDM1A increased ERß isoform 1 expression in established and patient-derived OCa cells. Further, KDM1A interacts with and functions as a corepressor of ERß, and its inhibition enhances ERß target gene expression via alterations of histone methylation marks at their promoters. Importantly, KDM1A-KO or -KD enhanced the efficacy of ERß agonist LY500307, and the combination of KDM1A inhibitor (KDM1Ai) NCD38 with ERß agonist synergistically reduced the cell viability, colony formation, and invasion of OCa cells. RNA-seq and DIA mass spectrometry analyses showed that KDM1A-KO resulted in enhanced ERß signaling and that genes altered by KDM1A-KO and ERß agonist were related to apoptosis, cell cycle, and EMT. Moreover, combination treatment significantly reduced the tumor growth in OCa orthotopic, syngeneic, and patient-derived xenograft models and proliferation in patient-derived explant models. Our results demonstrate that KDM1A regulates ERß expression/functions, and its inhibition improves ERß mediated tumor suppression. Overall, our findings suggest that KDM1Ai and ERß agonist combination therapy is a promising strategy for OCa.


Asunto(s)
Receptor beta de Estrógeno , Neoplasias Ováricas , Humanos , Femenino , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Línea Celular Tumoral , Genes Supresores de Tumor , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Estrógenos , Histona Demetilasas
10.
Mol Cancer Ther ; 22(11): 1248-1260, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493258

RESUMEN

Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERß) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERß agonist to promote its antitumor action is limiting the therapeutic promise of ERß. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERß agonists. Because of its high activity in ERß reporter assays, specific binding to ERß in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERß than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 µmol/L, while having little to no effect on ERß-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERß target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERß agonist, offering patients with GBM a potential means of improving survival.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Ratones , Animales , Glioblastoma/patología , Receptor beta de Estrógeno/genética , Línea Celular Tumoral , Encéfalo/metabolismo , Estrógenos , Neoplasias Encefálicas/patología
11.
Breast Cancer Res Treat ; 200(1): 151-162, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199805

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Oncogenic PELP1 is frequently overexpressed in TNBC, and it has been demonstrated that PELP1 signaling is essential for TNBC progression. The therapeutic utility of targeting PELP1 in TNBC, however, remains unknown. In this study, we investigated the effectiveness of SMIP34, a recently developed PELP1 inhibitor for the treatment of TNBC. METHODS: To ascertain the impact of SMIP34 treatment, we used seven different TNBC models for testing cell viability, colony formation, invasion, apoptosis, and cell cycle analysis. Western blotting and RT-qPCR were used to determine the mechanistic insights of SMIP34 action. Using xenograft and PDX tumors, the ability of SMIP34 in suppressing proliferation was examined both ex vivo and in vivo. RESULTS: TNBC cells' viability, colony formation, and invasiveness were all decreased by SMIP34 in in vitro cell-based assays, while apoptosis was increased. SMIP34 treatment promoted the degradation of PELP1 through the proteasome pathway. RT-qPCR analyses confirmed that SMIP34 treatment downregulated PELP1 target genes. Further, SMIP34 treatment substantially downregulated PELP1 mediated extranuclear signaling including ERK, mTOR, S6 and 4EBP1. Mechanistic studies confirmed downregulation of PELP1 mediated ribosomal biogenesis functions including downregulation of cMyc and Rix complex proteins LAS1L, TEX-10, and SENP3. The proliferation of TNBC tumor tissues was decreased in explant experiments by SMIP34. Additionally, SMIP34 treatment markedly decreased tumor progression in both TNBC xenograft and PDX models. CONCLUSIONS: Together, these findings from in vitro, ex vivo, and in vivo models show that SMIP34 may be a useful therapeutic agent for inhibiting PELP1 signaling in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular , Proteínas Co-Represoras , Cisteína Endopeptidasas/metabolismo , Transducción de Señal , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
12.
Neuro Oncol ; 25(7): 1249-1261, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-36652263

RESUMEN

BACKGROUND: Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS: Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS: TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS: Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Ratones , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Lisina/genética , Lisina/farmacología , Lisina/uso terapéutico , Roturas del ADN de Doble Cadena , Espectrometría de Masas en Tándem , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Reparación del ADN , ADN/farmacología , ADN/uso terapéutico , Histona Demetilasas/genética , Histona Demetilasas/farmacología , Histona Demetilasas/uso terapéutico , Resistencia a Antineoplásicos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancers (Basel) ; 14(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36358818

RESUMEN

Endometrial cancer (EC) is the fourth most common cancer in women, and half of the endometrioid EC (EEC) cases are attributable to obesity. However, the underlying mechanism(s) of obesity-driven EEC remain(s) unclear. In this study, we examined whether LIF signaling plays a role in the obesity-driven progression of EEC. RNA-seq analysis of EEC cells stimulated by adipose conditioned medium (ADP-CM) showed upregulation of LIF/LIFR-mediated signaling pathways including JAK/STAT and interleukin pathways. Immunohistochemistry analysis of normal and EEC tissues collected from obese patients revealed that LIF expression is upregulated in EEC tissues compared to the normal endometrium. Treatment of both primary and established EEC cells with ADP-CM increased the expression of LIF and its receptor LIFR and enhanced proliferation of EEC cells. Treatment of EEC cells with the LIFR inhibitor EC359 abolished ADP-CM induced colony formation andcell viability and decreased growth of EEC organoids. Mechanistic studies using Western blotting, RT-qPCR and reporter assays confirmed that ADP-CM activated LIF/LIFR downstream signaling, which can be effectively attenuated by the addition of EC359. In xenograft assays, co-implantation of adipocytes significantly enhanced EEC xenograft tumor growth. Further, treatment with EC359 significantly attenuated adipocyte-induced EEC progression in vivo. Collectively, our data support the premise that LIF/LIFR signaling plays an important role in obesity-driven EEC progression and the LIFR inhibitor EC359 has the potential to suppress adipocyte-driven tumor progression.

14.
Cancer Res ; 82(20): 3830-3844, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35950923

RESUMEN

Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteínas Co-Represoras , Factores de Transcripción , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proteínas Co-Represoras/antagonistas & inhibidores , Proteínas Co-Represoras/metabolismo , Receptor alfa de Estrógeno/genética , Estrógenos , Femenino , Ácido Glutámico , Humanos , Leucina , Prolina , Complejo de la Endopetidasa Proteasomal , Receptores de Estrógenos/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
15.
Nat Cancer ; 3(7): 866-884, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654861

RESUMEN

Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Lipasa/química , Ratones , Pliegue de Proteína , Neoplasias de la Mama Triple Negativas/genética
16.
Genes Dis ; 9(4): 973-980, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35685476

RESUMEN

Leukemia inhibitory factor (LIF), and its receptor (LIFR), are commonly over-expressed in many solid cancers and recent studies have implicated LIF/LIFR axis as a promising clinical target for cancer therapy. LIF/LIFR activate oncogenic signaling pathways including JAK/STAT3 as immediate effectors and MAPK, AKT, mTOR further downstream. LIF/LIFR signaling plays a key role in tumor growth, progression, metastasis, stemness and therapy resistance. Many solid cancers show overexpression of LIF and autocrine stimulation of the LIF/LIFR axis; these are associated with a poorer relapse-free survival. LIF/LIFR signaling also plays a role in modulating multiple immune cell types present in tumor micro environment (TME). Recently, two targeted agents that target LIF (humanized anti-LIF antibody, MSC-1) and LIFR inhibitor (EC359) were under development. Both agents showed effectivity in preclinical models and clinical trials using MSC-1 antibody are in progress. This article reviews the significance of LIF/LIFR pathways and inhibitors that disrupt this process for the treatment of cancer.

17.
Cancer Lett ; 540: 215717, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568265

RESUMEN

Aberrant activities of various cell cycle and DNA repair proteins promote cancer growth and progression and render them resistant to therapies. Here, we demonstrate that the anti-depressant imipramine blocks growth of triple-negative (TNBC) and estrogen receptor-positive (ER+) breast cancers by inducing cell cycle arrest and by blocking heightened homologous recombination (HR) and non-homologous end joining-mediated (NHEJ) DNA repair activities. Our results reveal that imipramine inhibits the expression of several cell cycle- and DNA repair-associated proteins including E2F1, CDK1, Cyclin D1, and RAD51. In addition, we show that imipramine inhibits the growth of ER + breast cancers by inhibiting the estrogen receptor- α (ER-α) signaling. Our studies in preclinical mouse models and ex vivo explants from breast cancer patients show that imipramine sensitizes TNBC to the PARP inhibitor olaparib and endocrine resistant ER + breast cancer to anti-estrogens. Our studies suggest that repurposing imipramine could enhance routine care for breast cancer patients. Based on these results, we designed an ongoing clinical trial, where we are testing the efficacy of imipramine for treating patients with triple-negative and estrogen receptor-positive breast cancer. Since aberrant DNA repair activity is used by many cancers to survive and become resistant to therapy, imipramine could be used alone and/or with currently used drugs for treating many aggressive cancers.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Reparación del ADN , Femenino , Humanos , Imipramina/farmacología , Imipramina/uso terapéutico , Ratones , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama Triple Negativas/genética
18.
Breast Cancer Res ; 24(1): 26, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395812

RESUMEN

BACKGROUND: Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance. METHODS: We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression. RESULTS: RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients. CONCLUSIONS: This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/farmacología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Tamoxifeno/farmacología , Factores de Transcripción/genética
19.
Cancers (Basel) ; 14(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35205680

RESUMEN

The PELP1 oncogene is commonly overexpressed in many cancers, including triple negative breast cancer (TNBC). However, the mechanisms by which PELP1 contributes to TNBC progression are not well understood. To elucidate these mechanisms, we generated CRISPR-Cas9 mediated PELP1 knockout TNBC cell lines, and alterations in the proteome were examined using global data-independent acquisition mass spectrometry (DIA-MS). Further mechanistic studies utilized shRNA knockdown, Western blotting, and RNA-seq approaches. TCGA data sets were utilized for determining the status of PELP1 in TNBC patient tumors and for examining its correlation with ribosomal proteins. Global DIA-MS studies revealed that 127 proteins are upregulated while 220 proteins are downregulated upon PELP1-KO. Bioinformatic analyses suggested that the oncogenic activities of PELP1 involve regulation of expression of ribosomal proteins and ribosomal complexes. RNA-seq studies further suggested PELP1 modulates the functions of transcription factor c-Myc in TNBC. TCGA data confirmed PELP1 has high expression in TNBC patient tumors, and this high expression pattern correlates with c-Myc, a regulator of ribosomal proteins. Collectively, our global approach studies suggest that PELP1 contributes to TNBC progression by modulation of cell cycle, apoptosis, and ribosome biogenesis pathways.

20.
Cancer Lett ; 524: 219-231, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673129

RESUMEN

Endometrial cancer (EC) often exhibit aberrant activation of PI3K/Akt/mTOR signaling and targeted therapies using mTOR inhibitors showed limited success. The epigenetic modifier, lysine-specific histone demethylase-1A (KDM1A/LSD1) is overexpressed in EC, however, the mechanistic and therapeutic implications of KDM1A in EC are poorly understood. Here, using 119 FDA-approved drugs screen, we identified that KDM1A inhibition is highly synergistic with mTOR inhibitors. Combination therapy of KDM1A and mTOR inhibitors potently reduced the cell viability, survival, and migration of EC cells. Mechanistic studies demonstrated that KDM1A inhibition attenuated the activation of mTOR signaling cascade and abolished rapamycin induced feedback activation of Akt. RNA-seq analysis identified that KDM1A inhibition downregulated the expression of genes involved in rapamycin induced activation of Akt, including the mTORC2 complex. Chromatin immunoprecipitation experiments confirmed KDM1A recruitment to the promoter regions of mTORC2 complex genes and that KDM1A inhibition promoted enrichment of repressive H3K9me2 marks at their promoters. Combination therapy of KDM1A inhibitor and rapamycin reduced the tumor growth in EC xenograft and patient derived xenograft models in vivo and patient derived tumor explants ex vivo. Importantly, in silico analysis of TCGA EC patients data sets revealed that KDM1A expression positively correlated with the levels of PI3K/Akt/mTOR genes. Collectively, our results provide compelling evidence that KDM1A inhibition potentiates the activity of mTOR inhibitors by attenuating the feedback activation of Akt survival signaling. Furthermore, the use of concurrent KDM1A and mTOR inhibitors may be an attractive targeted therapy for EC patients.


Asunto(s)
Neoplasias Endometriales/tratamiento farmacológico , Histona Demetilasas/genética , Inhibidores mTOR/farmacología , Serina-Treonina Quinasas TOR/genética , Animales , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Demetilasas/antagonistas & inhibidores , Humanos , Inhibidores mTOR/química , Masculino , Ratones , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...