Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Lancet Respir Med ; 11(6): 550-562, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36842446

RESUMEN

BACKGROUND: Elexacaftor-tezacaftor-ivacaftor has been shown to be safe and efficacious in people with cystic fibrosis and at least one F508del allele. Our aim was to identify a novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination capable of further increasing CFTR-mediated chloride transport, with the potential for once-daily dosing. METHODS: We conducted two phase 2 clinical trials to assess the safety and efficacy of a once-daily combination of vanzacaftor-tezacaftor-deutivacaftor in participants with cystic fibrosis who were aged 18 years or older. A phase 2 randomised, double-blind, active-controlled study (VX18-561-101; April 17, 2019, to Aug 20, 2020) was carried out to compare deutivacaftor monotherapy with ivacaftor monotherapy in participants with CFTR gating mutations, following a 4-week ivacaftor monotherapy run-in period. Participants were randomly assigned to receive either ivacaftor 150 mg every 12 h, deutivacaftor 25 mg once daily, deutivacaftor 50 mg once daily, deutivacaftor 150 mg once daily, or deutivacaftor 250 mg once daily in a 1:1:2:2:2 ratio. The primary endpoint was absolute change in ppFEV1 from baseline at week 12. A phase 2 randomised, double-blind, controlled, proof-of-concept study of vanzacaftor-tezacaftor-deutivacaftor (VX18-121-101; April 30, 2019, to Dec 10, 2019) was conducted in participants with cystic fibrosis and heterozygous for F508del and a minimal function mutation (F/MF genotypes) or homozygous for F508del (F/F genotype). Participants with F/MF genotypes were randomly assigned 1:2:2:1 to receive either 5 mg, 10 mg, or 20 mg of vanzacaftor in combination with tezacaftor-deutivacaftor or a triple placebo for 4 weeks, and participants with the F/F genotype were randomly assigned 2:1 to receive either vanzacaftor (20 mg)-tezacaftor-deutivacaftor or tezacaftor-ivacaftor active control for 4 weeks, following a 4-week tezacaftor-ivacaftor run-in period. Primary endpoints for part 1 and part 2 were safety and tolerability and absolute change in ppFEV1 from baseline to day 29. Secondary efficacy endpoints were absolute change from baseline at day 29 in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score. These clinical trials are registered with ClinicalTrials.gov, NCT03911713 and NCT03912233, and are complete. FINDINGS: In study VX18-561-101, participants treated with deutivacaftor 150 mg once daily (n=23) or deutivacaftor 250 mg once daily (n=24) had mean absolute changes in ppFEV1 of 3·1 percentage points (95% CI -0·8 to 7·0) and 2·7 percentage points (-1·0 to 6·5) from baseline at week 12, respectively, versus -0·8 percentage points (-6·2 to 4·7) with ivacaftor 150 mg every 12 h (n=11); the deutivacaftor safety profile was consistent with the established safety profile of ivacaftor 150 mg every 12 h. In study VX18-121-101, participants with F/MF genotypes treated with vanzacaftor (5 mg)-tezacaftor-deutivacaftor (n=9), vanzacaftor (10 mg)-tezacaftor-deutivacaftor (n=19), vanzacaftor (20 mg)-tezacaftor-deutivacaftor (n=20), and placebo (n=10) had mean changes relative to baseline at day 29 in ppFEV1 of 4·6 percentage points (-1·3 to 10·6), 14·2 percentage points (10·0 to 18·4), 9·8 percentage points (5·7 to 13·8), and 1·9 percentage points (-4·1 to 8·0), respectively, in sweat chloride concentration of -42·8 mmol/L (-51·7 to -34·0), -45·8 mmol/L (95% CI -51·9 to -39·7), -49·5 mmol/L (-55·9 to -43·1), and 2·3 mmol/L (-7·0 to 11·6), respectively, and in CFQ-R respiratory domain score of 17·6 points (3·5 to 31·6), 21·2 points (11·9 to 30·6), 29·8 points (21·0 to 38·7), and 3·3 points (-10·1 to 16·6), respectively. Participants with the F/F genotype treated with vanzacaftor (20 mg)-tezacaftor-deutivacaftor (n=18) and tezacaftor-ivacaftor (n=10) had mean changes relative to baseline (taking tezacaftor-ivacaftor) at day 29 in ppFEV1 of 15·9 percentage points (11·3 to 20·6) and -0·1 percentage points (-6·4 to 6·1), respectively, in sweat chloride concentration of -45·5 mmol/L (-49·7 to -41·3) and -2·6 mmol/L (-8·2 to 3·1), respectively, and in CFQ-R respiratory domain score of 19·4 points (95% CI 10·5 to 28·3) and -5·0 points (-16·9 to 7·0), respectively. The most common adverse events overall were cough, increased sputum, and headache. One participant in the vanzacaftor-tezacaftor-deutivacaftor group had a serious adverse event of infective pulmonary exacerbation and another participant had a serious rash event that led to treatment discontinuation. For most participants, adverse events were mild or moderate in severity. INTERPRETATION: Once-daily dosing with vanzacaftor-tezacaftor-deutivacaftor was safe and well tolerated and improved lung function, respiratory symptoms, and CFTR function. These results support the continued investigation of vanzacaftor-tezacaftor-deutivacaftor in phase 3 clinical trials compared with elexacaftor-tezacaftor-ivacaftor. FUNDING: Vertex Pharmaceuticals.


Asunto(s)
Fibrosis Quística , Humanos , Adulto , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Cloruros , Volumen Espiratorio Forzado , Aminofenoles/efectos adversos , Benzodioxoles/uso terapéutico , Mutación , Método Doble Ciego , Agonistas de los Canales de Cloruro/uso terapéutico
2.
Eur J Drug Metab Pharmacokinet ; 47(6): 817-825, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36036885

RESUMEN

BACKGROUND AND OBJECTIVE: Elexacaftor/tezacaftor/ivacaftor is highly effective in treating people with cystic fibrosis (pwCF) who have ≥ 1 responsive mutation. Liver disease occurs in approximately 10%-20% of pwCF. The objective of this study was to assess the safety and pharmacokinetics of elexacaftor/tezacaftor/ivacaftor in people with moderate hepatic impairment, which is necessary to inform on its use and guide dosing recommendations. METHODS: The safety and pharmacokinetics of elexacaftor/tezacaftor/ivacaftor were evaluated in subjects without CF with moderate hepatic impairment versus matched healthy controls. Twenty-two subjects (11 with moderate hepatic impairment and 11 healthy subjects) received half the standard adult daily dose of elexacaftor/tezacaftor/ivacaftor (elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 150 mg) orally for 10 days. RESULTS: Elexacaftor/tezacaftor/ivacaftor was safe and well tolerated in subjects with moderate hepatic impairment and healthy controls. On day 10, the mean values of the area under the curve during the dosing interval (AUCτ) for total (bound and unbound) elexacaftor and its major active metabolite M23-elexacaftor were increased 1.25-fold (95% CI 1.01, 1.54) and 1.73-fold (95% CI 1.27, 2.35), respectively, in subjects with moderate hepatic impairment compared with matched healthy subjects. The mean values of AUCτ for ivacaftor and tezacaftor were increased 1.50-fold (95% CI 1.09, 2.06) and 1.20-fold (95% CI 1.00, 1.43), respectively, while the mean value of AUCτ for the active metabolite M1-tezacaftor was 1.29-fold lower [ratio of moderate hepatic impairment to healthy subjects (95% CI): 0.778 (0.655, 0.924)] in subjects with moderate hepatic impairment. CONCLUSIONS: A dose reduction of elexacaftor/tezacaftor/ivacaftor is warranted in people with moderate hepatic impairment. (Trial registry number 2018-002570-40; registered 2 July 2018.).


Elexacaftor/tezacaftor/ivacaftor is a combination product (made up of the three drugs elexacaftor, tezacaftor, and ivacaftor) that can effectively treat cystic fibrosis (CF). About 10%­20% of people with CF have liver disease, and the liver plays an important role in breaking down these drugs. Thus, it is important to understand how liver disease or reduced liver function affects the amounts of these drugs in the body over time. This can help determine how much of the drug (i.e., what dose) people should take.We gave people with reduced liver function and healthy people (with normal liver function) elexacaftor/tezacaftor/ivacaftor for 10 days. We looked at the safety of the combination and measured the amounts of elexacaftor, tezacaftor, and ivacaftor in the body over time.We found that when people with moderately reduced liver function take elexacaftor/tezacaftor/ivacaftor, they have higher amounts of the drugs elexacaftor, tezacaftor, and ivacaftor in their bodies compared with healthy people with normal liver function. These findings mean that people with moderately reduced liver function should take a lower dose of elexacaftor/tezacaftor/ivacaftor.


Asunto(s)
Fibrosis Quística , Hepatopatías , Adulto , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/inducido químicamente , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Hepatopatías/tratamiento farmacológico
3.
Sci Rep ; 9(1): 3587, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837529

RESUMEN

The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamíferos/genética , Animales , Células CHO , Mapeo Cromosómico , Cricetinae , Cricetulus
4.
Am J Respir Crit Care Med ; 197(2): 214-224, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28930490

RESUMEN

RATIONALE: Tezacaftor (formerly VX-661) is an investigational small molecule that improves processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro, and improves CFTR function alone and in combination with ivacaftor. OBJECTIVES: To evaluate the safety and efficacy of tezacaftor monotherapy and of tezacaftor/ivacaftor combination therapy in subjects with cystic fibrosis homozygous for F508del or compound heterozygous for F508del and G551D. METHODS: This was a randomized, placebo-controlled, double-blind, multicenter, phase 2 study (NCT01531673). Subjects homozygous for F508del received tezacaftor (10 to 150 mg) every day alone or in combination with ivacaftor (150 mg every 12 h) in a dose escalation phase, as well as in a dosage regimen testing phase. Subjects compound heterozygous for F508del and G551D, taking physician-prescribed ivacaftor, received tezacaftor (100 mg every day). MEASUREMENTS AND MAIN RESULTS: Primary endpoints were safety through Day 56 and change in sweat chloride from baseline through Day 28. Secondary endpoints included change in percent predicted FEV1 (ppFEV1) from baseline through Day 28 and pharmacokinetics. The incidence of adverse events was similar across treatment arms. Tezacaftor (100 mg every day)/ivacaftor (150 mg every 12 h) resulted in a 6.04 mmol/L decrease in sweat chloride and 3.75 percentage point increase in ppFEV1 in subjects homozygous for F508del, and a 7.02 mmol/L decrease in sweat chloride and 4.60 percentage point increase in ppFEV1 in subjects compound heterozygous for F508del and G551D from baseline through Day 28 (P < 0.05 for all). CONCLUSIONS: These results support continued clinical development of tezacaftor (100 mg every day) in combination with ivacaftor (150 mg every 12 h) in subjects with cystic fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT01531673).


Asunto(s)
Aminofenoles/administración & dosificación , Benzodioxoles/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Indoles/administración & dosificación , Quinolonas/administración & dosificación , Administración Oral , Adolescente , Adulto , Aminofenoles/efectos adversos , Benzodioxoles/efectos adversos , Fibrosis Quística/diagnóstico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Quimioterapia Combinada , Femenino , Humanos , Indoles/efectos adversos , Masculino , Dosis Máxima Tolerada , Terapia Molecular Dirigida/métodos , Pronóstico , Quinolonas/efectos adversos , Pruebas de Función Respiratoria , Medición de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto Joven
5.
Nature ; 464(7288): 592-6, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20228792

RESUMEN

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.


Asunto(s)
Genoma/genética , Hydra/genética , Animales , Antozoos/genética , Comamonadaceae/genética , Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Hydra/microbiología , Hydra/ultraestructura , Datos de Secuencia Molecular , Unión Neuromuscular/ultraestructura
6.
PLoS Biol ; 5(4): e101, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17407382

RESUMEN

Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.


Asunto(s)
Genoma , Tiburones/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN , Humanos , Datos de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
7.
Science ; 314(5807): 1892, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17185593

RESUMEN

Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.


Asunto(s)
Secuencia Conservada , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos , Tiburones/genética , Animales , Secuencia de Bases , ADN Intergénico , Elementos de Facilitación Genéticos , Evolución Molecular , Genoma , Humanos , Datos de Secuencia Molecular , Takifugu/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA