Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(13): 8846-54, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19171938

RESUMEN

Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca(2+) ([Ca(2+)](i)). Two regions of Na(V)1.5 have been identified previously as [Ca(2+)](i)-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca(2+) levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca(2+). Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes Na(V)1.5 inactivation, similarly and more extensively than even reducing [Ca(2+)](i). Because the DIII-DIV linker is an essential structure in Na(V)1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe(1520)-Ile(1521)-Phe(1522)) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: Na(V)1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na(+) channel function in genetically altered channels and under pathophysiologic conditions where [Ca(2+)](i) impacts cardiac conduction.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Proteínas Musculares/metabolismo , Canales de Sodio/metabolismo , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Calcio/química , Calmodulina/química , Calmodulina/genética , Línea Celular , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5 , Resonancia Magnética Nuclear Biomolecular , Estabilidad Proteica , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Canales de Sodio/química , Canales de Sodio/genética
2.
Circ Res ; 102(9): e86-100, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18436794

RESUMEN

In congenital and acquired long QT type 2, women are more vulnerable than men to torsade de pointes. In prepubertal rabbits (and children), the arrhythmia phenotype is reversed; however, females still have longer action potential durations than males. Thus, sex differences in K(+) channels and action potential durations alone cannot account for sex-dependent arrhythmia phenotypes. The L-type calcium current (I(Ca,L)) is another determinant of action potential duration, Ca(2+) overload, early afterdepolarizations (EADs), and torsade de pointes. Therefore, sex, age, and regional differences in I(Ca,L) density and in EAD susceptibility were analyzed in epicardial left ventricular myocytes isolated from the apex and base of prepubertal and adult rabbit hearts. In prepubertal rabbits, peak I(Ca,L) at the base was 22% higher in males than females (6.4+/-0.5 versus 5.0+/-0.2 pA/pF; P<0.03) and higher than at the apex (6.4+/-0.5 versus 5.0+/-0.3 pA/pF; P<0.02). Sex differences were reversed in adults: I(Ca,L) at the base was 32% higher in females than males (9.5+/-0.7 versus 6.4+/-0.6 pA/pF; P<0.002) and 28% higher than the apex (9.5+/-0.7 versus 6.9+/-0.5 pA/pF; P<0.01). Apex-base differences in I(Ca,L) were not significant in adult male and prepubertal female hearts. Western blot analysis showed that Ca(v)1.2alpha levels varied with sex, maturity, and apex-base, with differences similar to variations in I(Ca,L); optical mapping revealed that the earliest EADs fired at the base. Single myocyte experiments and Luo-Rudy simulations concur that I(Ca,L) elevation promotes EADs and is an important determinant of long QT type 2 arrhythmia phenotype, most likely by reducing repolarization reserve and by enhancing Ca(2+) overload and the propensity for I(Ca,L) reactivation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Síndrome de QT Prolongado/etiología , Miocitos Cardíacos/metabolismo , Torsades de Pointes/etiología , Potenciales de Acción , Factores de Edad , Animales , Canales de Calcio Tipo L/genética , Simulación por Computador , Femenino , Ventrículos Cardíacos/metabolismo , Activación del Canal Iónico , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Masculino , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Pericardio/metabolismo , Fenotipo , Bloqueadores de los Canales de Potasio/toxicidad , Pirrolidinas/toxicidad , ARN Mensajero/metabolismo , Conejos , Proyectos de Investigación , Factores de Riesgo , Factores Sexuales , Intercambiador de Sodio-Calcio/metabolismo , Factores de Tiempo , Torsades de Pointes/inducido químicamente , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatología
3.
J Cardiovasc Pharmacol ; 50(5): 480-6, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18030056

RESUMEN

Unabated reactive oxygen species (ROS) are potentiated by an ischemia-induced shift in anaerobic metabolism, which generates superoxide anion upon reperfusion and reintroduction of oxygen. ROS can modify protein structure and function in fundamental ways, one of which is by forming reactive lipid species from the oxidation of lipids. In this review, we discuss these pathways and discuss the literature that shows that these species can produce dramatic effects on cardiac ion channel function (eg, Na+ channel function). Furthermore, we review what is known about the generation of such in the highly remodeled post myocardial infarction substrate. We suggest prevention of adduction of these highly reactive compounds would be antiarrhythmic.


Asunto(s)
Arritmias Cardíacas/etiología , F2-Isoprostanos/metabolismo , Peroxidación de Lípido/fisiología , Isquemia Miocárdica/complicaciones , Animales , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , F2-Isoprostanos/química , Humanos , Estructura Molecular , Isquemia Miocárdica/fisiopatología , Estrés Oxidativo/fisiología , Piridoxamina/análogos & derivados , Piridoxamina/uso terapéutico , Complejo Vitamínico B/uso terapéutico
4.
Circulation ; 116(20): 2260-8, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17967977

RESUMEN

BACKGROUND: Brugada syndrome is a rare, autosomal-dominant, male-predominant form of idiopathic ventricular fibrillation characterized by a right bundle-branch block and ST elevation in the right precordial leads of the surface ECG. Mutations in the cardiac Na+ channel SCN5A on chromosome 3p21 cause approximately 20% of the cases of Brugada syndrome; most mutations decrease inward Na+ current, some by preventing trafficking of the channels to the surface membrane. We previously used positional cloning to identify a new locus on chromosome 3p24 in a large family with Brugada syndrome and excluded SCN5A as a candidate gene. METHODS AND RESULTS: We used direct sequencing to identify a mutation (A280V) in a conserved amino acid of the glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) gene. The mutation was present in all affected individuals and absent in >500 control subjects. GPD1-L RNA and protein are abundant in the heart. Compared with wild-type GPD1-L, coexpression of A280V GPD1-L with SCN5A in HEK cells reduced inward Na+ currents by approximately 50% (P<0.005). Wild-type GPD1-L localized near the cell surface to a greater extent than A280V GPD1-L. Coexpression of A280V GPD1-L with SCN5A reduced SCN5A cell surface expression by 31+/-5% (P=0.01). CONCLUSIONS: GPD1-L is a novel gene that may affect trafficking of the cardiac Na+ channel to the cell surface. A GPD1-L mutation decreases SCN5A surface membrane expression, reduces inward Na+ current, and causes Brugada syndrome.


Asunto(s)
Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatología , Glicerolfosfato Deshidrogenasa/genética , Proteínas Musculares/genética , Canales de Sodio/genética , Deshidrogenasas del Alcohol de Azúcar/genética , Animales , Células COS , Chlorocebus aethiops , Cromosomas Humanos Par 3 , Salud de la Familia , Femenino , Glicerolfosfato Deshidrogenasa/metabolismo , Corazón/fisiología , Humanos , Italia , Riñón/citología , Masculino , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Linaje , Mutación Puntual , Sodio/metabolismo , Canales de Sodio/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Fibrilación Ventricular/genética , Fibrilación Ventricular/fisiopatología
5.
Heart Rhythm ; 4(1): 46-53, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17198989

RESUMEN

BACKGROUND: Brugada and long QT type 3 syndromes are linked to sodium channel mutations and clinically cause arrhythmias that lead to sudden death. We have identified a novel threonine-to-isoleucine missense mutation at position 353 (T353I) adjacent to the pore-lining region of domain I of the cardiac sodium channel (SCN5A) in a family with Brugada syndrome. Both male and female carriers are symptomatic at young ages, have typical Brugada-type electrocardiogram changes, and have relatively normal corrected QT intervals. OBJECTIVES: To characterize the properties of the newly identified cardiac sodium channel (SCN5A) mutation at the cellular level. RESULTS: Using whole-cell voltage clamp, we found that heterologous expression of SCN5A containing the T353I mutation resulted in 74% +/- 6% less peak macroscopic sodium current when compared with wild-type channels. A construct of the T353I mutant channel fused with green fluorescent protein failed to traffic properly to the sarcolemma, with a large proportion of channels sequestered intracellularly. Overnight exposure to 0.1 mM mexiletine, a Na(+) channel blocking agent, increased T353I channel trafficking to the membrane to near normal levels, but the mutant channels showed a significant late current that was 1.6% +/- 0.2% of peak sodium current at 200 ms, a finding seen with long QT mutations. CONCLUSIONS: The clinical presentation of patients carrying the T353I mutation is that of Brugada syndrome and could be explained by a cardiac Na(+) channel trafficking defect. However, when the defect was ameliorated, the mutated channels had biophysical properties consistent with long QT syndrome. The lack of phenotypic changes associated with the long QT syndrome could be explained by a T353I-induced trafficking defect reducing the number of mutant channels with persistent currents present at the sarcolemma.


Asunto(s)
Síndrome de Brugada/genética , Sistema de Conducción Cardíaco/patología , Síndrome de QT Prolongado/genética , Proteínas Musculares/genética , Mutación Missense/genética , Canales de Sodio/genética , Potenciales de Acción , Adulto , Células Cultivadas , Niño , Simulación por Computador , Análisis Mutacional de ADN , Electrocardiografía , Salud de la Familia , Femenino , Sistema de Conducción Cardíaco/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo
6.
J Biol Chem ; 282(8): 5506-13, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17189275

RESUMEN

The HERG (human ether-à-go-go-related gene) protein, which underlies the cardiac repolarizing current I(Kr), is the unintended target for many pharmaceutical agents. Inadvertent block of I(Kr), known as the acquired long QT syndrome (aLQTS), is a leading cause for drug withdrawal by the United States Food and Drug Administration. Hence, an improved understanding of the regulatory factors that protect most individuals from aLQTS is essential for advancing clinical therapeutics in broad areas, from cancer chemotherapy to antipsychotics and antidepressants. Here, we show that the K(+) channel regulatory protein KCR1, which markedly reduces I(Kr) drug sensitivity, protects HERG through glucosyltransferase function. KCR1 and the yeast alpha-1,2-glucosyltransferase ALG10 exhibit sequence homology, and like KCR1, ALG10 diminished HERG block by dofetilide. Inhibition of cellular glycosylation pathways with tunicamycin abrogated the effects of KCR1, as did expression in Lec1 cells (deficient in glycosylation). Moreover, KCR1 complemented the growth defect of an alg10-deficient yeast strain and enhanced glycosylation of an Alg10 substrate in yeast. HERG itself is not the target for KCR1-mediated glycosylation because the dofetilide response of glycosylation-deficient HERG(N598Q) was still modulated by KCR1. Nonetheless, our data indicate that the alpha-1,2-glucosyltransferase function is a key component of the molecular pathway whereby KCR1 diminishes I(Kr) drug response. Incorporation of in vitro data into a computational model indicated that KCR1 expression is protective against arrhythmias. These findings reveal a potential new avenue for targeted prevention of aLQTS.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Glucosiltransferasas/metabolismo , Síndrome de QT Prolongado/metabolismo , Animales , Antidepresivos/efectos adversos , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antipsicóticos/efectos adversos , Células CHO , Cricetinae , Cricetulus , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Expresión Génica , Glucosiltransferasas/deficiencia , Glucosiltransferasas/genética , Glicosilación , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/prevención & control , Modelos Cardiovasculares , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Modificación Traduccional de las Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Cardiovasc Res ; 72(2): 250-61, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16973141

RESUMEN

OBJECTIVE: Na(+) current derived from expression of the principal cardiac Na(+) channel, Na(v)1.5, is increased by activation of protein kinase A (PKA). This effect is blocked by inhibitors of cell membrane recycling, or removal of a cytoplasmic endoplasmic reticulum (ER) retention motif, suggesting that PKA stimulation increases trafficking of cardiac Na(+) channels to the plasma membrane. METHODS: To test this hypothesis, green fluorescent protein (GFP) was fused to Na(v)1.5 (Na(v)1.5-GFP), and the effects of PKA activation were investigated in intact, living cells that stably expressed the fusion protein. Using confocal microscopy, the spatial relationship of GFP-tagged channels relative to the plasma membrane was quantitated using a measurement that could control for variables present during live-cell imaging, and permit an unbiased analysis for all cells in a given field. RESULTS: In the absence of kinase stimulation, intracellular fluorescence representing Na(v)1.5-GFP channels was greatest in the perinuclear area, with additional concentration of channels beneath the cell surface. Activation of PKA promoted trafficking of Na(+) channels from both regions to the plasma membrane. Experimental results using a chemiluminescence-based assay further confirmed that PKA stimulation increased expression of Na(v)1.5 channels at the cell membrane. CONCLUSIONS: Our results provide direct evidence for PKA-mediated trafficking of cardiac Na(+) channels into the plasma membrane in living, mammalian cells, and they support the existence of multiple intracellular storage pools of channel protein that can be mobilized following a physiologic stimulus.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Riñón/metabolismo , Canales de Sodio/metabolismo , Animales , Western Blotting/métodos , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Activación Enzimática , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Luminiscencia , Microscopía Confocal , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Oocitos/metabolismo , Técnicas de Placa-Clamp , Transporte de Proteínas , Canales de Sodio/genética , Transfección/métodos , Xenopus
8.
Heart Rhythm ; 3(7): 824-31, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16818216

RESUMEN

BACKGROUND: Normal cardiac rhythm is critically dependent on the sinoatrial (SA) node, the natural biological pacemaker. Although recent studies have focused on the development of "artificial" biological pacemakers using gene transfer, less is known about the functional consequences of such interventions. OBJECTIVE: The purpose of this study was to investigate the electrophysiological consequences of two approaches used to create a biological pacemaker: overexpression of the hyperpolarization-activated cyclic nucleotide gated channel (HCN "pacemaker" channels) and suppression of the inward-rectifier potassium current, I(K1). METHODS: We used a linear multicellular Luo-Rudy (LRd) AP model consisting of 130 ventricular cells connected by resistive gap junctions. To induce automaticity, I(K1) current was reduced or I(f) (HCN) current was introduced in endocardial and midmyocardial (M) cells. RESULTS: Similar to the previously published results for a single LRd model, myocyte I(K1) suppression induced automaticity in the fiber. While introduction of I(f) also resulted in automaticity, the main differences between I(K1) suppression and I(f) expression were (1) a relatively more gradual phase 4 depolarization with HCN expression, (2) stabilization of cycle lengths during I(K1) suppression, but not during HCN expression, and (3) responsiveness to beta-adrenergic stimulation during HCN expression, but not during I(K1) suppression. Upon further investigation, we found that cycle length instability during HCN expression was primarily due to a gradual reduction of intracellular potassium ([K(+)](i)) from its baseline value of 142 mM to 120 mM in 600 beats and subsequent alteration of potassium-dependent ionic currents. A twofold increase in HCN expression also led to a similar behavior. We attribute this decrease in [K(+)](i) to a large I(K1) during phase 4 depolarization. When intracellular [K(+)](i) loss was minimized, cycle lengths stabilized during HCN expression. CONCLUSIONS: Our results help to further understand the electrophysiologic consequences as well as some of the challenges associated with the creation of biological pacemakers using HCN and I(K1) gene transfer strategies.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Canales Iónicos/biosíntesis , Modelos Teóricos , Miocitos Cardíacos/metabolismo , Marcapaso Artificial , Potasio/metabolismo , Potenciales de Acción/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Técnicas de Transferencia de Gen , Ventrículos Cardíacos/citología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Líquido Intracelular/metabolismo , Canales Iónicos/genética , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Canales de Potasio , Transducción de Señal/fisiología
9.
Circ Res ; 97(12): 1262-9, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16284182

RESUMEN

Sudden cardiac death attributable to ventricular tachycardia/fibrillation (VF) remains a catastrophic outcome of myocardial ischemia and infarction. At the same time, conventional antagonist drugs targeting ion channels have yielded poor survival benefits. Although pharmacological and genetic models suggest an association between sodium (Na+) channel loss-of-function and sudden cardiac death, molecular mechanisms have not been identified that convincingly link ischemia to Na+ channel dysfunction and ventricular arrhythmias. Because ischemia can evoke the generation of reactive oxygen species, we explored the effect of oxidative stress on Na+ channel function. We show here that oxidative stress reduces Na+ channel availability. Both the general oxidant tert-butyl-hydroperoxide and a specific, highly reactive product of the isoprostane pathway of lipid peroxidation, E2-isoketal, potentiate inactivation of cardiac Na+ channels in human embryonic kidney (HEK)-293 cells and cultured atrial (HL-1) myocytes. Furthermore, E2-isoketals were generated in the epicardial border zone of the canine healing infarct, an arrhythmogenic focus where Na+ channels exhibit similar inactivation defects. In addition, we show synergistic functional effects of flecainide, a proarrhythmic Na+ channel blocker, and oxidative stress. These data suggest Na+ channel dysfunction evoked by lipid peroxidation is a candidate mechanism for ischemia-related conduction abnormalities and arrhythmias.


Asunto(s)
Arritmias Cardíacas/etiología , Peroxidación de Lípido , Miocardio/metabolismo , Canales de Sodio/fisiología , Aldehídos/farmacología , Línea Celular , Flecainida/farmacología , Humanos , Isoprostanos/metabolismo , Infarto del Miocardio/metabolismo , Estrés Oxidativo , terc-Butilhidroperóxido/farmacología
10.
Circulation ; 112(21): 3239-46, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16301357

RESUMEN

BACKGROUND: The cardiac sodium channel (SCN5A) mutation L1825P has been identified in a patient with drug-induced torsade de pointes precipitated by the IKr blocker cisapride. Although L1825P generates late sodium current typical of SCN5A-linked long-QT syndrome (LQT3) in vitro, the patient reported had a normal QT interval before administration of the drug. To address this discrepancy, we tested the hypothesis that this mutant channel is not processed normally. METHODS AND RESULTS: CHO cells transfected with L1825P displayed significantly reduced peak INa (209+/-36 versus 23+/-3 pA/pF, P<0.05). Confocal imaging and cell-counting studies using epitope-tagged constructs demonstrated that cell surface expression of the mutant was only approximately 9% of wild-type. Incubating transfected cells with cisapride partially rescued misprocessing to 30% of wild-type. As a result, "late" sodium current increased with cisapride from 1.2+/-0.11 to 5.04+/-0.77 pA/pF (P<0.05). CONCLUSIONS: L1825P fails to generate QT prolongation because it does not reach the cell surface. Moreover, the data suggest that cisapride caused torsade de pointes not only by blocking IKr but also by rescuing cell surface expression of the mutant channel, further exaggerating the LQT3 phenotype. This not only represents a new mechanism in the drug-induced long-QT syndrome but also strongly supports the concept that variable cell surface expression contributes to clinical variability in the LQT3 phenotype.


Asunto(s)
Cisaprida/efectos adversos , Síndrome de QT Prolongado/fisiopatología , Proteínas Musculares/genética , Agonistas de Receptores de Serotonina/efectos adversos , Canales de Sodio/genética , Torsades de Pointes/inducido químicamente , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Células CHO , Cricetinae , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas Musculares/fisiología , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Fenotipo , Sodio/metabolismo , Canales de Sodio/fisiología , Estimulación Química , Torsades de Pointes/genética , Torsades de Pointes/fisiopatología , Transfección
11.
J Clin Invest ; 115(8): 2025-32, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16075043

RESUMEN

The QT interval is the electrocardiographic manifestation of ventricular repolarization, is variable under physiologic conditions, and is measurably prolonged by many drugs. Rarely, however, individuals with normal base-line intervals may display exaggerated QT interval prolongation, and the potentially fatal polymorphic ventricular tachycardia torsade de pointes, with drugs or other environmental stressors such as heart block or heart failure. This review summarizes the molecular and cellular mechanisms underlying this acquired or drug-induced form of long QT syndrome, describes approaches to the analysis of a role for DNA variants in the mediation of individual susceptibility, and proposes that these concepts may be generalizable to common acquired arrhythmias.


Asunto(s)
Síndrome de QT Prolongado/etiología , Síndrome de QT Prolongado/genética , Torsades de Pointes/etiología , Torsades de Pointes/genética , Animales , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Predisposición Genética a la Enfermedad , Humanos , Síndrome de QT Prolongado/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Factores de Riesgo , Factores Sexuales , Torsades de Pointes/metabolismo
12.
J Physiol ; 564(Pt 1): 21-31, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15677685

RESUMEN

Upon prolonged depolarizations, voltage-dependent Na+ channels open and subsequently inactivate, occupying fast and slow inactivated conformational states. Like C-type inactivation in K+ channels, slow inactivation is thought to be accompanied by rearrangement of the channel pore. Cysteine-labelling studies have shown that lidocaine, a local anaesthetic (LA) that elicits depolarization-dependent ('use-dependent') Na+ channel block, does not slow recovery from fast inactivation, but modulates the kinetics of slow inactivated states. While these observations suggest LA-induced stabilization of slow inactivation could be partly responsible for use dependence, a more stringent test would require that slow inactivation gating track the distinct use-dependent kinetic properties of diverse LA compounds, such as lidocaine and bupivacaine. For this purpose, we assayed the slow inactivation-dependent accessibility of cysteines engineered into domain III, P-segment (mu1: F1236C, K1237C) to sulfhydryl (MTSEA) modification using a high-speed solution exchange system. As expected, we found that bupivacaine, like lidocaine, protected cysteine residues from MTSEA modification in a depolarization-dependent manner. However, under pulse-train conditions where bupivacaine block of Na+ channels was extensive (due to ultra-slow recovery), but lidocaine block of Na+ channels was not, P-segment cysteines were protected from MTSEA modification. Here we show that conformational changes associated with slow inactivation track the vastly different rates of recovery from use-dependent block for bupivacaine and lidocaine. Our findings suggest that LA compounds may produce their kinetically distinct voltage-dependent behaviour by modulating slow inactivation gating to varying degrees.


Asunto(s)
Anestésicos Locales/farmacología , Canales de Sodio/química , Canales de Sodio/fisiología , Animales , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Conformación Proteica , Ratas
13.
Future Cardiol ; 1(1): 29-38, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19804059

RESUMEN

Significant advances in the field of molecular biology have enabled the identification of genes that confer susceptibility to disease. Inherited arrhythmia syndromes resulting from genetic alterations of various cardiac ion channels and proteins have been invaluable to further our understanding of the molecular basis of cardiac excitability. Mutations in SCN5A, the gene encoding the pore-forming subunit of the cardiac sodium channel, have been associated with distinct life-threatening cardiac rhythm syndromes. While electrophysiological characterization of mutant sodium channels in dissociated systems have revealed abnormalities in channel function, significant overlap between aberrant rhythm phenotypes suggests a complex relationship between mutations and disease phenotype. These new insights not only enhance our understanding of the structure--unction relationships of ion channels, but also highlight the complexities involved in linking single mutations, ion-channel behavior, and cardiac rhythm.

14.
Trends Cardiovasc Med ; 14(1): 28-35, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14720472

RESUMEN

Voltage-gated sodium channels are transmembrane proteins that produce the ionic current responsible for the rising phase of the cardiac action potential and play a fundamental role in the initiation, propagation, and maintenance of normal cardiac rhythm. Inherited mutations in SCN5A, the gene encoding the pore-forming subunit of the cardiac Na+ channel, have been associated with distinct cardiac rhythm syndromes: the congenital long QT syndrome, Brugada syndrome, and isolated conduction disease. Electrophysiologic characterization of heterologously expressed mutant Na+ channels have revealed gating defects that, in many cases, can explain the distinct phenotype associated with the rhythm disorder. However, recent studies have revealed significant overlap between aberrant rhythm phenotypes, and single mutations have been identified that evoke multiple rhythm disorders with common gating lesions. These new insights enhance understanding of the structure-function relationships of voltage-gated Na+ channels, and also highlight the complexities involved in linking single mutations, ion-channel behavior, and cardiac rhythm.


Asunto(s)
Arritmias Cardíacas/genética , Canales de Sodio/fisiología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Sistema de Conducción Cardíaco/fisiología , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Masculino , Mutagénesis Sitio-Dirigida , Pronóstico , Medición de Riesgo , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/genética
15.
J Clin Invest ; 111(3): 341-6, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12569159

RESUMEN

Our understanding of the genetic basis of disease has expanded with the identification of rare DNA sequence variations ("mutations") that evoke inherited syndromes such as cystic fibrosis, congenital epilepsy, and cardiac arrhythmias. Common sequence variants ("polymorphisms") have also been implicated as risk factors in multiple diseases. Mutations in SCN5A, the cardiac Na(+) channel gene, that cause a reduction in Na(+) current may evoke severe, life-threatening disturbances in cardiac rhythm (i.e., Brugada syndrome), isolated cardiac conduction disease, or combinations of these disorders. Conduction disease is manifest clinically as heart rate slowing (bradycardia), syncope, or "lightheadedness". Recent electrophysiologic studies reveal that mutations in particular families exhibiting cardiac conduction disease cause marked effects on several competing voltage-dependent gating processes, but nonetheless cause a mild "net" reduction in Na(+) current. Here we show that a common SCN5A polymorphism (H558R) in the Na(+) channel I-II interdomain cytoplasmic linker, present in 20% of the population, can mitigate the in vitro effects of a nearby mutation (T512I) on Na(+) channel function. The mutation and the polymorphism were both found in the same allele of a child with isolated conduction disease, suggesting a direct functional association between a polymorphism and a mutation in the same gene.


Asunto(s)
Mutación , Polimorfismo Genético , Canales de Sodio/genética , Alelos , Secuencia de Bases , ADN Complementario/metabolismo , Electrofisiología , Salud de la Familia , Femenino , Genotipo , Humanos , Lactante , Masculino , Potenciales de la Membrana , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.5 , Linaje , Fenotipo
16.
Circulation ; 105(16): 1943-8, 2002 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-11997281

RESUMEN

BACKGROUND: DNA variants appearing to predispose to drug-associated "acquired" long-QT syndrome (aLQTS) have been reported in congenital long-QT disease genes. However, the incidence of these genetic risk factors has not been systematically evaluated in a large set of patients with aLQTS. We have previously identified functionally important DNA variants in genes encoding K+ channel ancillary subunits in 11% of an aLQTS cohort. METHODS AND RESULTS: The coding regions of the genes encoding the pore-forming channel proteins KvLQT1, HERG, and SCN5A were screened in (1) the same aLQTS cohort (n=92) and (2) controls, drawn from patients tolerating QT-prolonging drugs (n=67) and cross sections of the Middle Tennessee (n=71) and US populations (n=90). The frequency of three common nonsynonymous coding region polymorphisms was no different between aLQTS and control subjects, as follows: 24% versus 19% for H558R (SCN5A), 3% versus 3% for R34C (SCN5A), and 14% versus 14% for K897T (HERG). Missense mutations (absent in controls) were identified in 5 of 92 patients. KvLQT1 and HERG mutations (one each) reduced K+ currents in vitro, consistent with the idea that they augment risk for aLQTS. However, three SCN5A variants did not alter I(Na), which argues that they played no role in the aLQTS phenotype. CONCLUSIONS: DNA variants in the coding regions of congenital long-QT disease genes predisposing to aLQTS can be identified in approximately 10% to 15% of affected subjects, predominantly in genes encoding ancillary subunits.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Predisposición Genética a la Enfermedad , Síndrome de QT Prolongado/genética , Canales de Potasio con Entrada de Voltaje , Torsades de Pointes/genética , Transactivadores , Alelos , Animales , Antiarrítmicos/efectos adversos , Células CHO , Línea Celular , Cricetinae , Canal de Potasio ERG1 , Conductividad Eléctrica , Canales de Potasio Éter-A-Go-Go , Femenino , Frecuencia de los Genes , Variación Genética , Humanos , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/fisiopatología , Masculino , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Polimorfismo Genético , Canales de Potasio/genética , Canales de Potasio/fisiología , Canales de Sodio/genética , Canales de Sodio/fisiología , Torsades de Pointes/inducido químicamente , Torsades de Pointes/fisiopatología , Regulador Transcripcional ERG
17.
Circulation ; 105(3): 341-6, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11804990

RESUMEN

BACKGROUND: Three distinct cardiac arrhythmia disorders, the long-QT syndrome, Brugada syndrome, and conduction system disease, have been associated with heterozygous mutations in the cardiac voltage-gated sodium channel alpha-subunit gene (SCN5A). We present clinical, genetic, and biophysical features of 2 new SCN5A mutations that result in atrioventricular (AV) conduction block. Methods and Results- SCN5A was used as a candidate gene in 2 children with AV block. Molecular genetic studies revealed G to A transition mutations that resulted in the substitution of serine for glycine (G298S) in the domain I S5-S6 loop and asparagine for aspartic acid (D1595N) within the S3 segment of domain IV. The functional consequences of G298S and D1595N were assessed by whole-cell patch clamp recording of recombinant mutant channels coexpressed with the beta1 subunit in a cultured cell line (tsA201). Both mutations impair fast inactivation but do not exhibit sustained non-inactivating currents. The mutations also reduce sodium current density and enhance slower inactivation components. Action potential simulations predict that this combination of biophysical abnormalities will significantly slow myocardial conduction velocity. CONCLUSIONS: A distinct pattern of biophysical abnormalities not previously observed for any other SCN5A mutant have been recognized in association with AV block. These data provide insight into the distinct clinical phenotypes resulting from mutation of a single ion channel.


Asunto(s)
Nodo Atrioventricular , Bloqueo Cardíaco/genética , Mutación , Canales de Sodio/genética , Potenciales de Acción , Adulto , Secuencia de Aminoácidos , Nodo Atrioventricular/fisiopatología , Línea Celular , Niño , Simulación por Computador , Electrocardiografía , Femenino , Bloqueo Cardíaco/diagnóstico , Bloqueo Cardíaco/fisiopatología , Humanos , Cinética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Canales de Sodio/química , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...