Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros













Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1355963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645276

RESUMEN

CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aß peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.

2.
EMBO J ; 43(4): 533-567, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316990

RESUMEN

The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.


Asunto(s)
Ácidos Grasos no Esterificados , Memoria a Largo Plazo , Proteínas Munc18 , Fosfolipasas , Animales , Ratones , Encéfalo/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Memoria/fisiología , Proteínas Munc18/genética , Fosfolipasas/genética
5.
Cell Mol Life Sci ; 80(9): 271, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642733

RESUMEN

Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.


Asunto(s)
Cromograninas , Péptidos , Cromogranina A , Estudios Prospectivos , Homeostasis
6.
Front Mol Biosci ; 10: 1163545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091866

RESUMEN

Although there is mounting evidence indicating that lipids serve crucial functions in cells and are implicated in a growing number of human diseases, their precise roles remain largely unknown. This is particularly true in the case of neurosecretion, where fusion with the plasma membrane of specific membrane organelles is essential. Yet, little attention has been given to the role of lipids. Recent groundbreaking research has emphasized the critical role of lipid localization at exocytotic sites and validated the essentiality of fusogenic lipids, such as phospholipase D (PLD)-generated phosphatidic acid (PA), during membrane fusion. Nevertheless, the regulatory mechanisms synchronizing the synthesis of these key lipids and neurosecretion remain poorly understood. The vacuolar ATPase (V-ATPase) has been involved both in vesicle neurotransmitter loading and in vesicle fusion. Thus, it represents an ideal candidate to regulate the fusogenic status of secretory vesicles according to their replenishment state. Indeed, the cytosolic V1 and vesicular membrane-associated V0 subdomains of V-ATPase were shown to dissociate during the stimulation of neurosecretory cells. This allows the subunits of the vesicular V0 to interact with different proteins of the secretory machinery. Here, we show that V0a1 interacts with the Arf nucleotide-binding site opener (ARNO) and promotes the activation of the Arf6 GTPase during the exocytosis in neuroendocrine cells. When the interaction between V0a1 and ARNO was disrupted, it resulted in the inhibition of PLD activation, synthesis of phosphatidic acid during exocytosis, and changes in the timing of fusion events. These findings indicate that the separation of V1 from V0 could function as a signal to initiate the ARNO-Arf6-PLD1 pathway and facilitate the production of phosphatidic acid, which is essential for effective exocytosis in neuroendocrine cells.

7.
Cells ; 12(5)2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36899886

RESUMEN

V-ATPase is an important factor in synaptic vesicle acidification and is implicated in synaptic transmission. Rotation in the extra-membranous V1 sector drives proton transfer through the membrane-embedded multi-subunit V0 sector of the V-ATPase. Intra-vesicular protons are then used to drive neurotransmitter uptake by synaptic vesicles. V0a and V0c, two membrane subunits of the V0 sector, have been shown to interact with SNARE proteins, and their photo-inactivation rapidly impairs synaptic transmission. V0d, a soluble subunit of the V0 sector strongly interacts with its membrane-embedded subunits and is crucial for the canonic proton transfer activity of the V-ATPase. Our investigations show that the loop 1.2 of V0c interacts with complexin, a major partner of the SNARE machinery and that V0d1 binding to V0c inhibits this interaction, as well as V0c association with SNARE complex. The injection of recombinant V0d1 in rat superior cervical ganglion neurons rapidly reduced neurotransmission. In chromaffin cells, V0d1 overexpression and V0c silencing modified in a comparable manner several parameters of unitary exocytotic events. Our data suggest that V0c subunit promotes exocytosis via interactions with complexin and SNAREs and that this activity can be antagonized by exogenous V0d.


Asunto(s)
Proteínas SNARE , ATPasas de Translocación de Protón Vacuolares , Ratas , Animales , Proteínas SNARE/metabolismo , Protones , Vesículas Sinápticas/metabolismo , Fusión de Membrana , ATPasas de Translocación de Protón Vacuolares/metabolismo
8.
Adv Biol Regul ; 87: 100924, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272918

RESUMEN

In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.


Asunto(s)
Exosomas , Neoplasias , Fosfolipasa D , Animales , Humanos , Exosomas/metabolismo , Mamíferos/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal
9.
Chem Sci ; 13(40): 11829-11840, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36320914

RESUMEN

Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aß). In vitro, Cu-Aß is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu-Aß is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aß and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aß1-16 peptide and consequently inhibited the Cu-Aß based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD.

10.
EMBO Rep ; 23(12): e55191, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36256516

RESUMEN

Autophagy has emerged as the prime machinery for implementing organelle quality control. In the context of mitophagy, the ubiquitin E3 ligase Parkin tags impaired mitochondria with ubiquitin to activate autophagic degradation. Although ubiquitination is essential for mitophagy, it is unclear how ubiquitinated mitochondria activate autophagosome assembly locally to ensure efficient destruction. Here, we report that Parkin activates lipid remodeling on mitochondria targeted for autophagic destruction. Mitochondrial Parkin induces the production of phosphatidic acid (PA) and its subsequent conversion to diacylglycerol (DAG) by recruiting phospholipase D2 and activating the PA phosphatase, Lipin-1. The production of DAG requires mitochondrial ubiquitination and ubiquitin-binding autophagy receptors, NDP52 and optineurin (OPTN). Autophagic receptors, via Golgi-derived vesicles, deliver an autophagic activator, EndoB1, to ubiquitinated mitochondria. Inhibition of Lipin-1, NDP52/OPTN, or EndoB1 results in a failure to produce mitochondrial DAG, autophagosomes, and mitochondrial clearance, while exogenous cell-permeable DAG can induce autophagosome production. Thus, mitochondrial DAG production acts downstream of Parkin to enable the local assembly of autophagosomes for the efficient disposal of ubiquitinated mitochondria.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Lípidos
11.
J Cell Biol ; 221(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35969857

RESUMEN

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the endoplasmic reticulum (ER). The ER protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at mitochondria-associated ER membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulates seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis and maturation at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at the membrane contact sites.


Asunto(s)
Retículo Endoplásmico , Gotas Lipídicas , Mitocondrias , Receptores de Esteroides , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Receptores de Esteroides/metabolismo
12.
Cancer Lett ; 543: 215765, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680072

RESUMEN

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Médula Suprarrenal , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/metabolismo , Médula Suprarrenal/metabolismo , Calcio , Calcio de la Dieta , Catecolaminas/metabolismo , Exocitosis , Humanos , Feocromocitoma/metabolismo
13.
Cancer Lett ; 524: 232-244, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637845

RESUMEN

Increasingly common, neuroendocrine tumors (NETs) are regarded nowadays as neoplasms potentially causing debilitating symptoms and life-threatening medical conditions. Pheochromocytoma is a NET that develops from chromaffin cells of the adrenal medulla, and is responsible for an excessive secretion of catecholamines. Consequently, patients have an increased risk for clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Somatostatin analogues are among the main anti-secretory medical drugs used in current clinical practice in patients with NETs. However, their impact on pheochromocytoma-associated catecholamine hypersecretion remains incompletely explored. This study investigated the potential efficacy of octreotide and pasireotide (SOM230) on human tumor cells directly cultured from freshly resected pheochromocytomas using an implemented catecholamine secretion measurement by carbon fiber amperometry. SOM230 treatment efficiently inhibited nicotine-induced catecholamine secretion both in bovine chromaffin cells and in human tumor cells whereas octreotide had no effect. Moreover, SOM230 specifically decreased the number of exocytic events by impairing the stimulation-evoked calcium influx as well as the nicotinic receptor-activated inward current in human pheochromocytoma cells. Altogether, our findings indicate that SOM230 acts as an inhibitor of catecholamine secretion through a mechanism involving the nicotinic receptor and might be considered as a potential anti-secretory treatment for patients with pheochromocytoma.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Tumores Neuroendocrinos/tratamiento farmacológico , Feocromocitoma/tratamiento farmacológico , Somatostatina/análogos & derivados , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Catecolaminas/biosíntesis , Catecolaminas/metabolismo , Línea Celular Tumoral , Humanos , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Octreótido/farmacología , Feocromocitoma/metabolismo , Feocromocitoma/patología , Somatostatina/farmacología
14.
Adv Biol Regul ; 83: 100844, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34876384

RESUMEN

Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine ß-hydroxylase (DßH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.


Asunto(s)
Células Neuroendocrinas , Fosfolipasa D , Endocitosis/genética , Exocitosis/fisiología , Humanos , Células Neuroendocrinas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo
15.
Bio Protoc ; 11(12): e4066, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34263007

RESUMEN

Over the last decade, lipids have emerged as possessing an ever-increasing number of key functions, especially in membrane trafficking. For instance, phosphatidic acid (PA) has been proposed to play a critical role in different steps along the secretory pathway or during phagocytosis. To further investigate in detail the precise nature of PA activities, we need to identify the organelles in which PA is synthesized and the PA subspecies involved in these biological functions. Indeed, PA, like all phospholipids, has a large variety based on its fatty acid composition. The recent development of PA sensors has helped us to follow intracellular PA dynamics but has failed to provide information on individual PA species. Here, we describe a method for the subcellular fractionation of RAW264.7 macrophages that allows us to obtain membrane fractions enriched in specific organelles based on their density. Lipids from these membrane fractions are precipitated and subsequently processed by advanced mass spectrometry-based lipidomics analysis to measure the levels of different PA species based on their fatty acyl chain composition. This approach revealed the presence of up to 50 different species of PA in cellular membranes, opening up the possibility that a single class of phospholipid could play multiple functions in any given organelle. This protocol can be adapted or modified and used for the evaluation of other intracellular membrane compartments or cell types of interest.

16.
STAR Protoc ; 2(2): 100464, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33912850

RESUMEN

The glycerophospholipid phosphatidic acid (PA) is a key player in regulated exocytosis, but little is known about its localization at the plasma membrane. Here, we provide a protocol for precisely determining the spatial distribution of PA at exocytotic sites by electron microscopy. Using primary bovine chromaffin cells expressing a PA sensor (Spo20p-GFP), we describe the process for cell stimulation and detergent-free preparation of plasma membrane sheets. The protocol can be applied to other cell models and to distinct membrane lipids. For complete details on the use and execution of this protocol, please refer to Tanguy et al. (2020).


Asunto(s)
Membrana Celular , Células Cromafines/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Bovinos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cromafines/ultraestructura , Microscopía Electrónica , Células PC12 , Ratas
17.
Elife ; 102021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404012

RESUMEN

Cancer extracellular vesicles (EVs) shuttle at distance and fertilize pre-metastatic niches facilitating subsequent seeding by tumor cells. However, the link between EV secretion mechanisms and their capacity to form pre-metastatic niches remains obscure. Using mouse models, we show that GTPases of the Ral family control, through the phospholipase D1, multi-vesicular bodies homeostasis and tune the biogenesis and secretion of pro-metastatic EVs. Importantly, EVs from RalA or RalB depleted cells have limited organotropic capacities in vivoand are less efficient in promoting metastasis. RalA and RalB reduce the EV levels of the adhesion molecule MCAM/CD146, which favors EV-mediated metastasis by allowing EVs targeting to the lungs. Finally, RalA, RalB, and MCAM/CD146, are factors of poor prognosis in breast cancer patients. Altogether, our study identifies RalGTPases as central molecules linking the mechanisms of EVs secretion and cargo loading to their capacity to disseminate and induce pre-metastatic niches in a CD146-dependent manner.


Asunto(s)
Neoplasias de la Mama/genética , Exosomas/patología , GTP Fosfohidrolasas/metabolismo , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/secundario , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Cuerpos Multivesiculares/fisiología , Pez Cebra
18.
Methods Mol Biol ; 2233: 43-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222126

RESUMEN

Plasma membrane proteins are amenable to endocytosis assays since they are easily labeled by reagents applied in the extracellular medium. This has been widely exploited to study constitutive endocytosis or ligand-induced receptor endocytosis. Compensatory endocytosis is the mechanism by which components of secretory vesicles are retrieved after vesicle fusion with the plasma membrane in response to cell stimulation and a rise in intracellular calcium. Luminal membrane proteins from secretory vesicles are therefore transiently exposed at the plasma membrane. Here, we described an antibody-based method to monitor compensatory endocytosis in chromaffin cells and present an image-based analysis to quantify endocytic vesicles distribution.


Asunto(s)
Anticuerpos/química , Endocitosis/genética , Biología Molecular/métodos , Vesículas Transportadoras/ultraestructura , Glándulas Suprarrenales/ultraestructura , Calcio/metabolismo , Células Cromafines/ultraestructura , Exocitosis/genética , Humanos , Fusión de Membrana/genética , Vesículas Secretoras/ultraestructura
19.
Methods Mol Biol ; 2233: 169-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222134

RESUMEN

Over the last four decades, chromaffin cells originating from the adrenal medulla have been probably one of the most popular cell models to study neurosecretion at the molecular level. Accordingly, numerous seminal discoveries in the field, including the characterization of role of the cytoskeleton, fusogenic lipids, and soluble N-ethylmaleimide-sensitivefactor attachment protein receptor (SNARE) proteins, have been made using this model. In this chapter, we describe a standard method currently used to isolate and culture bovine chromaffin cells, and we illustrate a catecholamine secretion assay based on the successive transformation of adrenaline into adrenochrome and adrenolutine for fluorescence measurements. We also provide some guidelines for efficient cell recovery and for the use of this assay in the laboratory.


Asunto(s)
Médula Suprarrenal/metabolismo , Secreciones Corporales/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cromafines/citología , Animales , Bovinos
20.
Methods Mol Biol ; 2233: 301-309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222143

RESUMEN

To study the formation and the architecture of exocytotic site, we generated plasma membrane (PM) sheets on electron microscopy grids to visualize the membrane organization and quantitatively analyze distributions of specific proteins and lipids. This technique allows observing the cytoplasmic face of the plasma membrane by transmission electron microscope. The principle of this approach relies on application of mechanical forces to break open cells. The exposed inner membrane surface can then be visualized with different electron-dense colorations, and specific proteins or lipids can be detected with gold-conjugated probes. Moreover, the membrane sheets are sufficiently resistant to support automated acquisition of multiple-tilt projections, and thus electron tomography allows to obtain three-dimensional (3D) ultrastructural images of secretory granule docked to the plasma membrane.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Exocitosis/genética , Imagenología Tridimensional/métodos , Microscopía Electrónica de Transmisión/métodos , Animales , Transporte Biológico/genética , Membrana Celular/ultraestructura , Ratones , Vesículas Secretoras/ultraestructura , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA