Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Discov ; 19(7): 855-867, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803122

RESUMEN

INTRODUCTION: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug. AREAS COVERED: This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed. EXPERT OPINION: The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.


Asunto(s)
Antineoplásicos , Auranofina , Diseño de Fármacos , Neoplasias , Auranofina/farmacología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Neoplasias/tratamiento farmacológico , Animales , Reposicionamiento de Medicamentos
2.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488024

RESUMEN

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Asunto(s)
Pinus sylvestris , Árboles , Ecosistema , Sequías , Isótopos/análisis , Pinus sylvestris/fisiología , Aclimatación , Agua/fisiología , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis
3.
Appl Magn Reson ; 55(1-3): 187-205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357007

RESUMEN

Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample. When analysing experimental distance distributions between two nitroxide spin labels, the site-specific rotamer information has been projected into the distance and is not readily available, and the contributions of individual labelling sites to the width of the distance distribution are not obvious from the PDS data. Here, we exploit the exquisite precision of labelling double-histidine (dHis) motifs with CuII chelate complexes. The contribution of this label to the distance distribution widths in model protein GB1 has been shown to be negligible. By combining a dHis CuII labelling site with cysteine-specific nitroxide labelling, we gather insights on the label rotamers at two distinct sites, comparing their contributions to distance distributions based on different in silico modelling approaches and structural models. From this study, it seems advisable to consider discrepancies between different in silico modelling approaches when selecting labelling sites for PDS studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s00723-023-01611-1.

4.
Sci Rep ; 13(1): 22017, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086881

RESUMEN

The possibility of using selectively incorporated 19F nuclei for NMR spectroscopic studies has retrieved increasing interest in recent years. The high gyromagnetic ratio of 19F and its absence in native biomolecular systems make this nucleus an interesting alternative to standard 1H NMR spectroscopy. Here we show how we can attach a label, carrying a 19F atom, to protein tyrosines, through the use of a specific three component Mannich-type reaction. To validate the efficacy and the specificity of the approach, we tested it on two selected systems with the aid of ESI MS measurements.


Asunto(s)
Proteínas , Tirosina , Proteínas/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos
5.
New Phytol ; 239(2): 547-561, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219870

RESUMEN

Recent methodological advancements in determining the nonexchangeable hydrogen isotopic composition (δ2 Hne ) of plant carbohydrates make it possible to disentangle the drivers of hydrogen isotope (2 H) fractionation processes in plants. Here, we investigated the influence of phylogeny on the δ2 Hne of twig xylem cellulose and xylem water, as well as leaf sugars and leaf water, across 73 Northern Hemisphere tree and shrub species growing in a common garden. 2 H fractionation in plant carbohydrates followed distinct phylogenetic patterns, with phylogeny reflected more in the δ2 Hne of leaf sugars than in that of twig xylem cellulose. Phylogeny had no detectable influence on the δ2 Hne of twig or leaf water, showing that biochemistry, not isotopic differences in plant water, caused the observed phylogenetic pattern in carbohydrates. Angiosperms were more 2 H-enriched than gymnosperms, but substantial δ2 Hne variations also occurred at the order, family, and species levels within both clades. Differences in the strength of the phylogenetic signals in δ2 Hne of leaf sugars and twig xylem cellulose suggest that the original phylogenetic signal of autotrophic processes was altered by subsequent species-specific metabolism. Our results will help improve 2 H fractionation models for plant carbohydrates and have important consequences for dendrochronological and ecophysiological studies.


Asunto(s)
Carbohidratos , Hidrógeno , Filogenia , Hidrógeno/metabolismo , Isótopos de Oxígeno/metabolismo , Hojas de la Planta/metabolismo , Isótopos de Carbono/metabolismo , Celulosa/metabolismo , Xilema/metabolismo , Agua/metabolismo , Azúcares/metabolismo , Plantas/metabolismo
6.
Tree Physiol ; 43(5): 706-721, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36738262

RESUMEN

Recent experiments have underlined the potential of δ2H in tree-ring cellulose as a physiological indicator of shifts in autotrophic versus heterotrophic processes (i.e., the use of fresh versus stored non-structural carbohydrates). However, the impact of these processes has not yet been quantified under natural conditions. Defoliator outbreaks disrupt tree functioning and carbon assimilation, stimulating remobilization, therefore providing a unique opportunity to improve our understanding of changes in δ2H. By exploring a 700-year tree-ring isotope chronology from Switzerland, we assessed the impact of 79 larch budmoth (LBM, Zeiraphera griseana [Hübner]) outbreaks on the growth of its host tree species, Larix decidua [Mill]. The LBM outbreaks significantly altered the tree-ring isotopic signature, creating a 2H-enrichment and an 18O- and 13C-depletion. Changes in tree physiological functioning in outbreak years are shown by the decoupling of δ2H and δ18O (O-H relationship), in contrast to the positive correlation in non-outbreak years. Across the centuries, the O-H relationship in outbreak years was not significantly affected by temperature, indicating that non-climatic physiological processes dominate over climate in determining δ2H. We conclude that the combination of these isotopic parameters can serve as a metric for assessing changes in physiological mechanisms over time.


Asunto(s)
Larix , Mariposas Nocturnas , Animales , Árboles , Suiza , Isótopos de Oxígeno/análisis , Mariposas Nocturnas/fisiología , Larix/fisiología , Isótopos de Carbono/análisis
7.
Plant Cell Environ ; 45(1): 12-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564870

RESUMEN

The analysis of the non-exchangeable hydrogen isotope ratio (δ2 Hne ) in carbohydrates is mostly limited to the structural component cellulose, while simple high-throughput methods for δ2 Hne values of non-structural carbohydrates (NSC) such as sugar and starch do not yet exist. Here, we tested if the hot vapor equilibration method originally developed for cellulose is applicable for NSC, verified by comparison with the traditional nitration method. We set up a detailed analytical protocol and applied the method to plant extracts of leaves from species with different photosynthetic pathways (i.e., C3 , C4 and CAM). δ2 Hne of commercial sugars and starch from different classes and sources, ranging from -157.8 to +6.4‰, were reproducibly analysed with precision between 0.2‰ and 7.7‰. Mean δ2 Hne values of sugar are lowest in C3 (-92.0‰), intermediate in C4 (-32.5‰) and highest in CAM plants (6.0‰), with NSC being 2 H-depleted compared to cellulose and sugar being generally more 2 H-enriched than starch. Our results suggest that our method can be used in future studies to disentangle 2 H-fractionation processes, for improving mechanistic δ2 Hne models for leaf and tree-ring cellulose and for further development of δ2 Hne in plant carbohydrates as a potential proxy for climate, hydrology, plant metabolism and physiology.


Asunto(s)
Bioquímica de los Carbohidratos/métodos , Hidrógeno/análisis , Plantas/química , Almidón/química , Azúcares/química , Celulosa/química , Deuterio/análisis , Hojas de la Planta/química , Vapor , Temperatura
8.
Dalton Trans ; 50(38): 13554-13560, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34505859

RESUMEN

A small library of dinuclear gold(I) complexes with the title ligands has been prepared, encompassing neutral, mono- and dicationic complexes. The luminescence properties of the complexes in the solid state have been evaluated, and it turns out that neutral and monocationic complexes not presenting a rigid metallamacrocyclic structure can exhibit rather strong emissions that extend towards the red region of the visible spectrum. The in vitro anticancer activity of the complexes has been also preliminarly evaluated; cytotoxicity seems to correlate with complex lipophilicity, whereas selectivity towards cancer cells can be apparently enhanced upon a judicious choice of the ligands.


Asunto(s)
Antineoplásicos/síntesis química , Complejos de Coordinación/química , Oro/química , Metano/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Humanos , Ligandos , Metano/química , Conformación Molecular
9.
Plant Cell Environ ; 44(11): 3552-3570, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462922

RESUMEN

Monitoring early tree physiological responses to drought is key to understanding progressive impacts of drought on forests and identifying resilient species. We combined drone-based multispectral remote sensing with measurements of tree physiology and environmental parameters over two growing seasons in a 100-y-old Pinus sylvestris forest subject to 17-y of precipitation manipulation. Our goal was to determine if drone-based photochemical reflectance index (PRI) captures tree drought stress responses and whether responses are affected by long-term acclimation. PRI detects changes in xanthophyll cycle pigment dynamics, which reflect increases in photoprotective non-photochemical quenching activity resulting from drought-induced photosynthesis downregulation. Here, PRI of never-irrigated trees was up to 10 times lower (higher stress) than PRI of irrigated trees. Long-term acclimation to experimental treatment, however, influenced the seasonal relationship between PRI and soil water availability. PRI also captured diurnal decreases in photochemical efficiency, driven by vapour pressure deficit. Interestingly, 5 years after irrigation was stopped for a subset of the irrigated trees, a positive legacy effect persisted, with lower stress responses (higher PRI) compared with never-irrigated trees. This study demonstrates the ability of remotely sensed PRI to scale tree physiological responses to an entire forest and the importance of long-term acclimation in determining current drought stress responses.


Asunto(s)
Aclimatación , Botánica/instrumentación , Sequías , Pinus sylvestris/fisiología , Árboles/fisiología , Dispositivos Aéreos No Tripulados , Bosques , Estaciones del Año
10.
Front Plant Sci ; 12: 715399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421968

RESUMEN

Trees that grow in urban areas are confronted with a wide variety of stresses that undermine their long-term survival. These include mechanical damage to the crown, root reduction and stem injury, all of which remove significant parts of plant tissues. The single or combined effects of these stresses generate a complex array of growth and ecophysiological responses that are hard to predict. Here we evaluated the effects of different individual and combined damage on the dynamics of non-structural carbohydrates (NSC, low weight sugars plus starch) concentration and new tissue growth (diameter increment) in young trees. We hypothesized that (i) tissue damage will induce larger reductions in diameter growth than in NSC concentrations and (ii) combinations of stress treatments that minimally alter the "functional equilibrium" (e.g., similar reductions of leaf and root area) would have the least impact on NSC concentrations (although not on growth) helping to maintain tree health and integrity. To test these hypotheses, we set up a manipulative field experiment with 10-year-old trees of common urban species (Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata). These trees were treated with a complete array of mechanical damage combinations at different levels of intensity (i.e., three levels of defoliation and root reduction, and two levels of stem damage). We found that tree growth declined in relation to the total amount of stress inflicted on the trees, i.e., when the combined highest level of stress was applied, but NSC concentrations were either not affected or, in some cases, increased with an increasing level of stress. We did not find a consistent response in concentration of reserves in relation to the combined stress treatments. Therefore, trees appear to reach a new "functional equilibrium" that allows them to adjust their levels of carbohydrate reserves, especially in stems and roots, to meet their metabolic demand under stressful situations. Our results provide a unique insight into the carbon economy of trees facing multiple urban stress conditions in order to better predict long-term tree performance and vitality.

11.
Tree Physiol ; 41(11): 2046-2062, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-33960372

RESUMEN

Picea abies (L.) Karst. and Fagus sylvatica (L.) are important tree species in Europe, and the foreseen increase in temperature and vapour pressure deficit (VPD) could increase the vulnerability of these species. However, their physiological performance under climate change at temperate and productive sites is not yet fully understood, especially in uneven-aged stands. Therefore, we investigated tree-ring width and stable isotope chronologies (δ13C/δ18O) of these two species at 10 sites along a climate gradient in Central Europe. In these uneven-aged stands, we compared the year-to-year variability of dominant and suppressed trees for the last 80 years in relation to the sites' spatial distribution and climate. δ18O and δ13C were generally consistent across sites and species, showing high sensitivity to summer VPD, whereas climate correlations with radial growth varied much more and depended on mean local climate. We found no significant differences between dominant and suppressed trees in the response of stable isotope ratios to climate variability, especially within the annual high-frequency signals. In addition, we observed a strikingly high coherence of the high-frequency δ18O variations across long distances with significant correlations above 1500 km, whereas the spatial agreement of δ13C variations was weaker (~700 km). We applied a dual-isotope approach that is based on known theoretical understanding of isotope fractionations to translate the observed changes into physiological components, mainly photosynthetic assimilation rate and stomatal conductance. When separating the chronologies in two time windows and investigating the shifts in isotopes ratios, a significant enrichment of either or both isotope ratios over the last decades can be observed. These results, translated by the dual-isotope approach, indicate a general climate-driven decrease in stomatal conductance. This improved understanding of the physiological mechanisms controlling the short-term variation of the isotopic signature will help to define the performance of these tree species under future climate.


Asunto(s)
Bosques , Árboles , Isótopos de Carbono/análisis , Cambio Climático , Europa (Continente) , Isótopos de Oxígeno/análisis
12.
Sci Rep ; 9(1): 19081, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836756

RESUMEN

This work reports a method to select the optimal working frequency in transversal bulk resonator acoustophoretic devices by electrical impedance measurements. The impedance spectra of acoustophoretic devices are rich in spurious resonance peaks originating from different resonance modes in the system not directly related to the channel resonance, why direct measurement of the piezoelectric transducer impedance spectra is not a viable strategy. This work presents, for the first time, that the resonance modes of microchip integrated acoustophoresis channels can be identified by sequentially measuring the impedance spectra of the acoustophoretic device when the channel is filled with two different fluids and subsequently calculate the Normalized Differential Spectrum (NDS). Seven transversal bulk resonator acoustophoretic devices of different materials and designs were tested with successful results. The developed method enables a rapid, reproducible and precise determination of the optimal working frequency.

13.
Front Plant Sci ; 10: 1100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620144

RESUMEN

Urban trees are subjected to numerous biotic and mechanical damages, which can affect their growth rates and health. However, for most species, a systematic analysis of tree above- and below-ground growth reactions to a variety of damages is still lacking. Under a fully factorial experimental setup, using two common urban trees (Celtis occidentalis, Fraxinus pennsylvanica), we tested the effects of various degrees of frequently occurring damage as defoliation, root reduction, and stem injuries for a total of 18 treatments. We hypothesized that (i) an increasing amount of damage would proportionally negatively affect both root and stem growth; (ii) there would be a lag or lasting effect on growth; and (iii) both species would react similarly to the treatments. Contrary to our expectation, increasing levels of single or combined damage did not have an incremental effect on either stem or root growth. Although Celtis was significantly less vigorous than Fraxinus, it did not react strongly to damage treatments compared to the control. Interestingly, Celtis that experienced stem damage alone or in combination with other damages showed higher growth rates than the control. For Celtis, root injury was the treatment having the most impact, decreasing both root and stem growth consistently throughout the 5 years following treatments, whereas defoliation decreased growth only in the first 2 years. All damage treatments negatively affected stem and root growth of Fraxinus trees. Stem growth was affected the most by defoliation in the first year following the treatment, while root injury became the driving factor in subsequent years. For both species, stem injury showed the least influence on growth rates. The control and low-level damage treatments often affected growth rates in a similar way, suggesting that low-intensity stress triggers compensatory reactions stimulating photosynthetic rates and nutrient utilization. The slower-growing tree species, Celtis, showed a less negative reaction to all damage treatments compared to Fraxinus. This study illustrates that various types of above- and below-ground injuries do not have a simple additive effect on tree growth and that trees are capable of compensating for the loss of foliage, roots, or phloem to meet their metabolic demand.

14.
Glob Chang Biol ; 23(12): 5108-5119, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28556403

RESUMEN

Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed-species stands along an altitudinal gradient (400-1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population-level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.


Asunto(s)
Abies/fisiología , Sequías , Picea/fisiología , Pseudotsuga/fisiología , Adaptación Fisiológica , Cambio Climático , Europa (Continente) , Bosques , Alemania , Noruega
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...