Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37999287

RESUMEN

This study focuses on the dissolution process and surface characterization of amosite fibres following interaction with a mimicked Gamble's solution at a pH of 4.5 and T = 37 °C, up to 720 h. To achieve this, a multi-analytical approach was adopted, and the results were compared to those previously obtained on a sample of asbestos tremolite and UICC crocidolite, which were investigated under the same experimental conditions. Combining surface chemical data obtained by XPS with cation release quantified by ICP-OES, an incongruent behaviour of the fibre dissolution was highlighted for amosite fibres, similarly to asbestos tremolite and UICC crocidolite. In particular, a preferential release of Mg and Ca from the amphibole structure was observed, in agreement with their Madelung site energies. Notably, no Fe release from amosite fibres was detected in our experimental conditions (pH of 4.5 and atmospheric pO2), despite the occurrence of Fe(II) at the M(4) site of the amphibole structure, where cations are expected to be rapidly leached out during mineral dissolution. Moreover, the oxidation of both the Fe centres initially present on the fibre surface and those promoted from the bulk, because of the erosion of the outmost layers, was observed. Since biodurability (i.e., the resistance to dissolution) is one of the most important toxicity parameters, the knowledge of the surface alteration of asbestos possibly occurring in vivo may help to understand the mechanisms at the basis of its long-term toxicity.

2.
J Hazard Mater ; 457: 131754, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37276694

RESUMEN

The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestos-like morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure.

3.
Polymers (Basel) ; 15(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36987191

RESUMEN

Cement asbestos slates, commonly known as Eternit® and still abundant in private and public buildings, were deactivated through a thermal process. The resulting deactivated cement asbestos powder (DCAP), a mixture of Ca-Mg-Al silicates and glass, was compounded with Pavatekno Gold 200 (PT) and Pavafloor H200/E (PF), two different epoxy resins (bisphenol A epichlorohydrin) for flooring applications. The addition of the DCAP filler to the PF samples causes a slight but acceptable decrease in the relevant mechanical properties (compressive, tensile, and flexural strengths) upon increasing DCAP content. The addition of the DCAP filler to pure epoxy (PT resin) causes a slight decrease in the tensile and flexural strengths with increasing DCAP content, while the compressive strength is almost unaffected, and the Shore hardness increases. The main mechanical properties of the PT samples are significantly better than those of the filler-bearing sample of normal production. Overall, these results suggest that DCAP can be advantageously used as filler in addition to, or in substitution for, commercial barite. In particular, the sample with 20 wt% of DCAP is the best performing in terms of compressive, tensile, and flexural strengths, whereas the sample with 30 wt% of DCAP shows the highest Shore hardness, which is an important property to be considered in flooring applications.

4.
J Vis Exp ; (177)2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34806713

RESUMEN

Many rock deformation experiments used to characterize the frictional properties of tectonic faults are performed on powdered fault rocks or on bare rock surfaces. These experiments have been fundamental to document the frictional properties of granular mineral phases and provide evidence for crustal faults characterized by high friction. However, they cannot entirely capture the frictional properties of faults rich in phyllosilicates. Numerous studies of natural faults have documented fluid-assisted reaction softening promoting the replacement of strong minerals with phyllosilicates that are distributed into continuous foliations. To study how these foliated fabrics influence the frictional properties of faults we have: 1) collected foliated phyllosilicate-rich rocks from natural faults; 2) cut the fault rock samples to obtain solid wafers 0.8-1.2 cm thick and 5 cm x 5 cm in area with the foliation parallel to the 5x5cm face of the wafer; 3) performed friction tests on both solid wafers sheared in their in situ geometry and powders, obtained by crushing and sieving and therefore disrupting the foliation of the same samples; 4) recovered the samples for microstructural studies from the post experiment rock samples; and 5) performed microstructural analyses via optical microscopy, scanning and transmission electron microscopy. Mechanical data show that the solid samples with well-developed foliation show significantly lower friction in comparison to their powdered equivalents. Micro- and nano-structural studies demonstrate that low friction results from sliding along the foliation surfaces composed of phyllosilicates. When the same rocks are powdered, frictional strength is high, because sliding is accommodated by fracturing, grain rotation, translation and associated dilation. Friction tests indicate that foliated fault rocks may have low friction even when phyllosilicates constitute only a small percentage of the total rock volume, implying that a significant number of crustal faults are weak.

5.
J Hazard Mater ; 398: 123119, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32768844

RESUMEN

This study discloses the morphological and chemical-structural modifications that occur during thermal degradation of amphibole asbestos. Low-iron tremolite and iron-rich crocidolite were heated at temperatures ranging from r.t. to 1200 °C. Heating promoted a complex sequence of iron oxidation, migration and/or clustering and, finally, the formation of brittle fibrous pseudomorphs consisting of newly formed minerals and amorphous nanophases. The effects of the thermal modifications on toxicologically relevant asbestos reactivity were evaluated by quantifying carbon- and oxygen-centred, namely hydroxyl (OH), radicals. Heating did not alter carbon radicals, but largely affected oxygen-centred radical yields. At low temperature, reactivity of both amphiboles decreased. At 1200 °C, tremolite structural breakdown was achieved and the reactivity was further reduced by migration of reactive iron ions into the more stable TO4 tetrahedra of the newly formed pyroxene(s). Differently, crocidolite breakdown at 1000 °C induced the formation of hematite, Fe-rich pyroxene, cristobalite, and abundant amorphous material and restored radical reactivity. Our finding suggests that thermally treated asbestos and its breakdown products still share some toxicologically relevant properties with pristine fibre. Asbestos inertization studies should consider morphology and surface reactivity, beyond crystallinity, when proving that a thermally inactivated asbestos-containing material is safe.

6.
J Cell Physiol ; 234(5): 6696-6708, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30341892

RESUMEN

Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called "ochronosis" and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell-matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.


Asunto(s)
Alcaptonuria/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Ácido Homogentísico/farmacología , Ocronosis/tratamiento farmacológico , Alcaptonuria/metabolismo , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Humanos , Oxidación-Reducción/efectos de los fármacos , Pigmentación/efectos de los fármacos
7.
Nat Commun ; 9(1): 3552, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177707

RESUMEN

Laboratory experiments on serpentinite suggest that extreme dynamic weakening at earthquake slip rates is accompanied by amorphisation, dehydration and possible melting. However, hypotheses arising from experiments remain untested in nature, because earthquake ruptures have not previously been recognised in serpentinite shear zones. Here we document the progressive formation of high-temperature reaction products that formed by coseismic amorphisation and dehydration in a plate boundary-scale serpentinite shear zone. The highest-temperature products are aggregates of nanocrystalline olivine and enstatite, indicating minimum peak coseismic temperatures of ca. 925 ± 60 °C. Modelling suggests that frictional heating during earthquakes of magnitude 2.7-4 can satisfy the petrological constraints on the coseismic temperature profile, assuming that coseismic fluid storage capacity and permeability are increased by the development of reaction-enhanced porosity. Our results indicate that earthquake ruptures can propagate through serpentinite shear zones, and that the signatures of transient frictional heating can be preserved in the fault rock record.

8.
Calcif Tissue Int ; 101(1): 50-64, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28271171

RESUMEN

Alkaptonuria (AKU) is a hereditary disorder that results from altered structure and function of homogentisate 1,2 dioxygenase (HGD). This enzyme, predominantly produced by liver and kidney, is responsible for the breakdown of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway. A deficient HGD activity causes HGA levels to rise systemically. The disease is clinically characterized by homogentisic aciduria, bluish-black discoloration of connective tissues (ochronosis) and joint arthropathy. Additional manifestations are cardiovascular abnormalities, renal, urethral and prostate calculi and scleral and ear involvement. While the radiological aspect of ochronotic spondyloarthropathy is known, there are only few data regarding an exhaustive ultrastructural and histologic study of different tissues in AKU. Moreover, an in-depth analysis of tissues from patients of different ages, having varied symptoms, is currently lacking. A complete microscopic and ultrastructural analysis of different AKU tissues, coming from six differently aged patients, is here presented thus significantly contributing to a more comprehensive knowledge of this ultra-rare pathology.


Asunto(s)
Alcaptonuria/patología , Adulto , Anciano , Alcaptonuria/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ocronosis/etiología , Ocronosis/patología
9.
J Cell Physiol ; 230(5): 1148-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25336110

RESUMEN

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.


Asunto(s)
Alcaptonuria/patología , Apoptosis , Cartílago/patología , Condrocitos/patología , Adulto , Anciano , Anciano de 80 o más Años , Aldehídos/metabolismo , Cartílago/ultraestructura , Condrocitos/ultraestructura , Activación Enzimática , Femenino , Proteínas de Unión al GTP/metabolismo , Humanos , Articulaciones/patología , Masculino , Persona de Mediana Edad , Osteoartritis/patología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Espectrometría por Rayos X , Coloración y Etiquetado , Transglutaminasas/metabolismo
10.
Mediators Inflamm ; 2014: 258471, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24876668

RESUMEN

BACKGROUND: Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient. RESULTS: Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient. CONCLUSIONS: SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A local HGD expression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart.


Asunto(s)
Alcaptonuria/inmunología , Alcaptonuria/metabolismo , Amiloidosis/fisiopatología , Inflamación/fisiopatología , Estrés Oxidativo , Anciano , Válvula Aórtica/metabolismo , Artritis Reumatoide/sangre , Femenino , Humanos , Peroxidación de Lípido , Linfocitos/citología , Macrófagos/citología , Miocardio/metabolismo , Ocronosis/metabolismo , Proteína Amiloide A Sérica/metabolismo
11.
J Expo Sci Environ Epidemiol ; 24(1): 42-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23385294

RESUMEN

Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.


Asunto(s)
Carbono/análisis , Metalurgia , Metales/análisis , Exposición Profesional , Cuarzo/química , Aerosoles , Carbono/química , Carbono/toxicidad , Polvo/análisis , Monitoreo del Ambiente/métodos , Hierro , Metales/química , Metales/toxicidad , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Cuarzo/toxicidad
12.
Nature ; 462(7275): 907-10, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20016599

RESUMEN

Geological and geophysical evidence suggests that some crustal faults are weak compared to laboratory measurements of frictional strength. Explanations for fault weakness include the presence of weak minerals, high fluid pressures within the fault core and dynamic processes such as normal stress reduction, acoustic fluidization or extreme weakening at high slip velocity. Dynamic weakening mechanisms can explain some observations; however, creep and aseismic slip are thought to occur on weak faults, and quasi-static weakening mechanisms are required to initiate frictional slip on mis-oriented faults, at high angles to the tectonic stress field. Moreover, the maintenance of high fluid pressures requires specialized conditions and weak mineral phases are not present in sufficient abundance to satisfy weak fault models, so weak faults remain largely unexplained. Here we provide laboratory evidence for a brittle, frictional weakening mechanism based on common fault zone fabrics. We report on the frictional strength of intact fault rocks sheared in their in situ geometry. Samples with well-developed foliation are extremely weak compared to their powdered equivalents. Micro- and nano-structural studies show that frictional sliding occurs along very fine-grained foliations composed of phyllosilicates (talc and smectite). When the same rocks are powdered, frictional strength is high, consistent with cataclastic processes. Our data show that fault weakness can occur in cases where weak mineral phases constitute only a small percentage of the total fault rock and that low friction results from slip on a network of weak phyllosilicate-rich surfaces that define the rock fabric. The widespread documentation of foliated fault rocks along mature faults in different tectonic settings and from many different protoliths suggests that this mechanism could be a viable explanation for fault weakening in the brittle crust.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA