Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057675

RESUMEN

The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.

2.
Mov Disord ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924157

RESUMEN

BACKGROUND: Transcranial magnetic stimulation-electroencephalography (TMS-EEG) has demonstrated decreased excitability in the primary motor cortex (M1) and increased excitability in the pre-supplementary motor area (pre-SMA) in moderate-advanced Parkinson's disease (PD). OBJECTIVES: The aim was to investigate whether these abnormalities are evident from the early stages of the disease, their behavioral correlates, and relationship to cortico-subcortical connections. METHODS: Twenty-eight early, drug-naive (de novo) PD patients and 28 healthy controls (HCs) underwent TMS-EEG to record TMS-evoked potentials (TEPs) from the primary motor cortex (M1) and the pre-SMA, kinematic recording of finger-tapping movements, and a 3T-MRI (magnetic resonance imaging) scan to obtain diffusion tensor imaging (DTI) reconstruction of white matter (WM) tracts connecting M1 to the ventral lateral anterior thalamic nucleus and pre-SMA to the anterior putamen. RESULTS: We found reduced M1 TEP P30 amplitude in de novo PD patients compared to HCs and similar pre-SMA TEP N40 amplitude between groups. PD patients exhibited smaller amplitude and slower velocity in finger-tapping movements and altered structural integrity in WM tracts of interest, although these changes did not correlate with TEPs. CONCLUSIONS: M1 hypoexcitability is a characteristic of PD from early phases and may be a marker of the parkinsonian state. Pre-SMA hyperexcitability is not evident in early PD and possibly emerges at later stages of the disease. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Brain Commun ; 6(3): fcae178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863577

RESUMEN

Saliva is a convenient and accessible biofluid that has potential as a future diagnostic tool for Parkinson's disease. Candidate diagnostic tests for Parkinson's disease to date have predominantly focused on measurements of α-synuclein in CSF, but there is a need for accurate tests utilizing more easily accessible sample types. Prior studies utilizing saliva have used bulk measurements of salivary α-synuclein to provide diagnostic insight. Aggregate structure may influence the contribution of α-synuclein to disease pathology. Single-molecule approaches can characterize the structure of individual aggregates present in the biofluid and may, therefore, provide greater insight than bulk measurements. We have employed an antibody-based single-molecule pulldown assay to quantify salivary α-synuclein and amyloid-ß peptide aggregate numbers and subsequently super-resolved captured aggregates using direct Stochastic Optical Reconstruction Microscopy to describe their morphological features. We show that the salivary α-synuclein aggregate/amyloid-ß aggregate ratio is increased almost 2-fold in patients with Parkinson's disease (n = 20) compared with controls (n = 20, P < 0.05). Morphological information also provides insight, with saliva from patients with Parkinson's disease containing a greater proportion of larger and more fibrillar amyloid-ß aggregates than control saliva (P < 0.05). Furthermore, the combination of count and morphology data provides greater diagnostic value than either measure alone, distinguishing between patients with Parkinson's disease (n = 17) and controls (n = 18) with a high degree of accuracy (area under the curve = 0.87, P < 0.001) and a larger dynamic range. We, therefore, demonstrate for the first time the application of highly sensitive single-molecule imaging techniques to saliva. In addition, we show that aggregates present within saliva retain relevant structural information, further expanding the potential utility of saliva-based diagnostic methods.

4.
J Neurol ; 271(7): 3711-3720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720139

RESUMEN

BACKGROUND: Parkinson's disease (PD) patients are frequently exposed to antidepressant medications (ADMs). Norepinephrine (NE) and serotonin (5HT) systems have a role in levodopa-induced dyskinesias (LID) pathophysiology. METHODS: We performed a longitudinal analysis on the PPMI cohort including drug-naïve PD patients, who are progressively exposed to dopamine replacement therapies (DRTs) to test the effect of ADM exposure on LID development by the 4th year of follow-up. RESULTS: LID prevalence (according to MDS UPDRS score 4.1 ≥ 1) was 16% (42/251); these patients were more likely women (p = 0.01), had higher motor (p < 0.001) and depression scores (p = 0.01) and lower putaminal DAT binding ratio (p = 0.01). LID were associated with the exposure time to L-DOPA (2.2 ± 1.07 vs 2.6 ± 0.9, p = 0.02) and to the exposure to ADMs, in particular to SNRI (4.8% vs 21.4%, p < 0.001). The latter persisted after correcting for significant covariates (e.g., disease duration, cognitive status, motor impairment, depression, dopaminergic denervation). A similar difference in LID prevalence in PD patients exposed vs non-exposed to SNRI was observed on matched data by the real-world TriNetX repository (22% vs 13%, p < 0.001). DISCUSSION: This study supports the presence of an effect of SNRI on LID priming in patients with early PD. Independent prospective cohort studies are warranted to further verify such association.


Asunto(s)
Antiparkinsonianos , Discinesia Inducida por Medicamentos , Levodopa , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Femenino , Masculino , Anciano , Persona de Mediana Edad , Discinesia Inducida por Medicamentos/etiología , Levodopa/efectos adversos , Levodopa/farmacología , Levodopa/administración & dosificación , Antiparkinsonianos/efectos adversos , Antiparkinsonianos/administración & dosificación , Estudios Longitudinales , Inhibidores de Captación de Serotonina y Norepinefrina/farmacología , Inhibidores de Captación de Serotonina y Norepinefrina/administración & dosificación , Inhibidores de Captación de Serotonina y Norepinefrina/efectos adversos
5.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732041

RESUMEN

Oligomeric alpha-synuclein (α-syn) in saliva and phosphorylated α-syn deposits in the skin have emerged as promising diagnostic biomarkers for Parkinson's disease (PD). This study aimed to assess and compare the diagnostic value of these biomarkers in discriminating between 38 PD patients and 24 healthy subjects (HSs) using easily accessible biological samples. Additionally, the study sought to determine the diagnostic potential of combining these biomarkers and to explore their correlations with clinical features. Salivary oligomeric α-syn levels were quantified using competitive ELISA, while skin biopsies were analyzed through immunofluorescence to detect phosphorylated α-syn at Ser129 (p-S129). Both biomarkers individually were accurate in discriminating PD patients from HSs, with a modest agreement between them. The combined positivity of salivary α-syn oligomers and skin p-S129 aggregates differentiated PD patients from HSs with an excellent discriminative ability with an AUC of 0.9095. The modest agreement observed between salivary and skin biomarkers individually suggests that they may reflect different aspects of PD pathology, thus providing complementary information when combined. This study's results highlight the potential of utilizing a multimodal biomarker approach to enhance diagnostic accuracy in PD.


Asunto(s)
Biomarcadores , Enfermedad de Parkinson , Saliva , Piel , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Saliva/metabolismo , Biomarcadores/metabolismo , Masculino , Femenino , alfa-Sinucleína/metabolismo , alfa-Sinucleína/análisis , Persona de Mediana Edad , Anciano , Piel/metabolismo , Piel/patología , Fosforilación , Estudios de Casos y Controles
6.
Mov Disord Clin Pract ; 11(7): 808-813, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661486

RESUMEN

BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) has been linked to an increased risk of early-onset Parkinson's disease. However, the pathophysiological mechanisms underlying parkinsonism remain poorly understood. OBJECTIVE: The objective is to investigate salivary total α-synuclein levels in 22q11.2DS patients with and without parkinsonian motor signs. METHODS: This cross-sectional study included 10 patients with 22q11.2DS with parkinsonism (Park+), ten 22q11.2DS patients without parkinsonism (Park-), and 10 age and sex-comparable healthy subjects (HS). Salivary and serum α-synuclein levels were measured using enzyme-linked immunosorbent assay. RESULTS: Salivary total α-synuclein concentration was significantly lower in Park (+) patients than in Park (-) patients and HS (P = 0.007). In addition, salivary α-synuclein showed good accuracy in discriminating Park (+) from Park (-) patients (area under the curve = 0.86) and correlated with motor severity and cognitive impairment. CONCLUSION: This exploratory study suggests that the parkinsonian phenotype of 22q11.2DS is associated with a reduced concentration of monomeric α-synuclein in biological fluids.


Asunto(s)
Biomarcadores , Síndrome de DiGeorge , Trastornos Parkinsonianos , Saliva , alfa-Sinucleína , Humanos , Masculino , Femenino , Estudios Transversales , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Saliva/química , Saliva/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Biomarcadores/análisis , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/diagnóstico , Trastornos Parkinsonianos/sangre , Adulto , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/sangre , Adulto Joven , Persona de Mediana Edad , Adolescente
7.
Neural Regen Res ; 19(12): 2613-2625, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595280

RESUMEN

The search for reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis, to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies. Despite the need for non-invasively accessible biomarkers, the majority of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers, which require invasive collection procedures. Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers. In the present study, after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease, we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients. A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289 articles. After screening and exclusion, 34 relevant articles were derived for systematic review. Alpha-synuclein, the histopathological hallmark of Parkinson's disease, has been the most investigated Parkinson's disease biomarker in saliva, with oligomeric alpha-synuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls, while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein, and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease. Beyond alpha-synuclein, other biomarkers targeting different molecular pathways have been explored in the saliva of Parkinson's disease patients: total tau, phosphorylated tau, amyloid-ß1-42 (pathological protein aggregation biomarkers); DJ-1, heme-oxygenase-1, metabolites (altered energy homeostasis biomarkers); MAPLC-3beta (aberrant proteostasis biomarker); cortisol, tumor necrosis factor-alpha (inflammation biomarkers); DNA methylation, miRNA (DNA/RNA defects biomarkers); acetylcholinesterase activity (synaptic and neuronal network dysfunction biomarkers); Raman spectra, proteome, and caffeine. Despite a few studies investigating biomarkers targeting molecular pathways different from alpha-synuclein in Parkinson's disease, these results should be replicated and observed in studies on larger cohorts, considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes. Although the need for standardization in sample collection and processing, salivary-based biomarkers studies have reported encouraging results, calling for large-scale longitudinal studies and multicentric assessments, given the great molecular potentials and the non-invasive accessibility of saliva.

8.
Neurogastroenterol Motil ; 36(5): e14780, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462652

RESUMEN

BACKGROUND: Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE: In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.


Asunto(s)
Estrés del Retículo Endoplásmico , Enfermedades Neurodegenerativas , Estrés del Retículo Endoplásmico/fisiología , Humanos , Enfermedades Neurodegenerativas/metabolismo , Animales , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Células de Paneth/metabolismo , Inflamación/metabolismo
9.
Eur J Histochem ; 67(4)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37859350

RESUMEN

Cholangiocytes, the epithelial cells that line the biliary tree, can proliferate under the stimulation of several factors through both autocrine and paracrine pathways. The cocaine-amphetamine-regulated-transcript (CART) peptide has several physiological functions, and it is widely expressed in several organs. CART increases the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor (BDNF), whose expression has been correlated to the proliferation rate of cholangiocytes. In the present study, we aimed to evaluate the expression of CART and its role in modulating cholangiocyte proliferation in healthy and bile duct ligated (BDL) rats in vivo, as well as in cultured normal rat cholangiocytes (NRC) in vitro. Liver samples from both healthy and BDL (1 week) rats, were analyzed by immunohistochemistry and immunofluorescence for CART, CK19, TrkB and p75NTR BDNF receptors. PCNA staining was used to evaluate the proliferation of the cholangiocytes, whereas TUNEL assay was used to evaluate biliary apoptosis. NRC treated or not with CART were used to confirm the role of CART on cholangiocytes proliferation and the secretion of BDNF. Cholangiocytes proliferation, apoptosis, CART and TrkB expression were increased in BDL rats, compared to control rats. We found a higher expression of TrkB and p75NTR, which could be correlated with the proliferation rate of biliary tree during BDL. The in vitro study demonstrated increased BDNF secretion by NRC after treatment with CART compared with control cells. As previously reported, proliferating cholangiocytes acquire a neuroendocrine phenotype, modulated by several factors, including neurotrophins. Accordingly, CART may play a key role in the remodeling of biliary epithelium during cholestasis by modulating the secretion of BDNF.


Asunto(s)
Conductos Biliares , Factor Neurotrófico Derivado del Encéfalo , Proteínas del Tejido Nervioso , Animales , Ratas , Conductos Biliares/citología , Conductos Biliares/metabolismo , Conductos Biliares/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular , Epitelio/metabolismo , Proteínas del Tejido Nervioso/metabolismo
10.
Mov Disord Clin Pract ; 10(8): 1198-1202, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37635779

RESUMEN

Background: Distal upper limb tremor during walking (TW) is frequently observed in Parkinson's disease (PD) but its clinical features are unknown. Objective: To characterize the occurrence and the clinical features of TW in comparison to the other types of tremors in PD. Methods: Fifty-one PD patients with rest tremor were evaluated off- and on-treatment. Occurrence, body distribution, severity and latency of TW and of other tremor types were assessed. Results: TW was present in 78% of the PD patients examined. TW body distribution and severity were similar to those of rest and re-emergent tremor but different from the postural tremor presented by the same patients. TW latency, observed in 85% of patients, was on average 5.8 s. Dopaminergic treatment significantly improved TW, rest, and re-emergent tremor severity but left TW latency unaffected. Conclusions: TW is a frequent motor sign in PD and is likely a clinical variant of rest tremor.

12.
Ann Neurol ; 93(3): 446-459, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36385395

RESUMEN

OBJECTIVE: To investigate molecular biomarkers of a-synuclein and tau aggregation, autophagy, and inflammation in the saliva of de novo Parkinson's disease (PD) patients in comparison to healthy subjects (HS), and to correlate molecular data with clinical features of PD patients, in order to establish whether abnormalities of these parameters are associated with specific clusters of de novo PD patients, and their potential diagnostic power in differentiating PD patients from HS. METHODS: We measured total and oligomeric a-synuclein, total-tau and phosphorylated-tau, microtubule-associated protein light chain 3 beta (MAP-LC3beta), and tumor necrosis factor alpha (TNFalpha) in the saliva of 80 de novo PD patients and 62 HS, using quantitative enzyme-linked immunosorbent Assay analysis. RESULTS: Oligomeric a-synuclein, total-tau, MAP-LC3beta, and TNFalpha levels resulted significantly higher in patients with respect to HS, while no significant differences were detected for total a-synuclein or phosphorylated-tau. Phosphorylated-tau directly correlated with MAP-LC3beta, whereas it inversely correlated with TNFalpha in PD patients. An inverse correlation was detected between MAP-LC3beta and non-motor symptoms severity. Principal Component Analysis showed that molecular and clinical parameters were independent of each other in de novo PD patients. Receiver operating characteristic curve analysis reported an accurate diagnostic performance of oligomeric a-synuclein and MAP-LC3beta. The diagnostic accuracy of total a-synuclein increased when it was combined with other salivary biomarkers targeting different molecular pathways. INTERPRETATION: Our study proposes a novel biomarker panel using saliva, a non-invasive biofluid, in de novo PD patients, with implications in understanding the molecular pathways involved in PD pathogenesis and the relevance of different molecular pathways in determining clinical PD subtypes. ANN NEUROL 2023;93:446-459.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/metabolismo , Factor de Necrosis Tumoral alfa , Proteínas tau , Biomarcadores
14.
Life (Basel) ; 12(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36556493

RESUMEN

Liver cancer represents a global health challenge with worldwide growth. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Indeed, approximately 90% of HCC cases have a low survival rate. Moreover, cholangiocarcinoma (CC) is another malignant solid tumor originating from cholangiocytes, the epithelial cells of the biliary system. It is the second-most common primary liver tumor, with an increasing course in morbidity and mortality. Tumor cells always show high metabolic levels, antioxidant modifications, and an increased iron uptake to maintain unlimited growth. In recent years, alterations in iron metabolism have been shown to play an important role in the pathogenesis of HCC. Several findings show that a diet rich in iron can enhance HCC risk. Hence, elevated iron concentration inside the cell may promote the development of HCC. Growing evidence sustains that activating ferroptosis may potentially block the proliferation of HCC cells. Even in CC, it has been shown that ferroptosis plays a crucial role in the treatment of tumors. Several data confirmed the inhibitory effect in cell growth of photodynamic therapy (PDT) that can induce reactive oxygen species (ROS) in CC, leading to an increase in malondialdehyde (MDA) and a decrease in intracellular glutathione (GSH). MDA and GSH depletion/modulation are crucial in inducing ferroptosis, suggesting that PDT may have the potential to induce this kind of cell death through these ways. A selective induction of programmed cell death in cancer cells is one of the main treatments for malignant tumors; thus, ferroptosis may represent a novel therapeutic strategy against HCC and CC.

15.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35161694

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with widespread aggregation of α-synuclein and dopaminergic neuronal loss in the substantia nigra pars compacta. As a result, striatal dopaminergic denervation leads to functional changes in the cortico-basal-ganglia-thalamo-cortical loop, which in turn cause most of the parkinsonian signs and symptoms. Despite tremendous advances in the field in the last two decades, the overall management (i.e., diagnosis and follow-up) of patients with PD remains largely based on clinical procedures. Accordingly, a relevant advance in the field would require the development of innovative biomarkers for PD. Recently, the development of miniaturized electrochemical sensors has opened new opportunities in the clinical management of PD thanks to wearable devices able to detect specific biological molecules from various body fluids. We here first summarize the main wearable electrochemical technologies currently available and their possible use as medical devices. Then, we critically discuss the possible strengths and weaknesses of wearable electrochemical devices in the management of chronic diseases including PD. Finally, we speculate about possible future applications of wearable electrochemical sensors in PD, such as the attractive opportunity for personalized closed-loop therapeutic approaches.


Asunto(s)
Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Biomarcadores , Cuerpo Estriado , Dopamina , Humanos , Enfermedad de Parkinson/diagnóstico
16.
Neurotox Res ; 39(2): 156-169, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33206341

RESUMEN

The neurotoxin 1-methyl, 4-phenyl, 1, 2, 3, 6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism. Such a disease is characterized by neuronal damage in multiple regions beyond the nigrostriatal pathway including the spinal cord. The neurotoxin MPTP damages spinal motor neurons. So far, in Parkinson's disease (PD) patients alpha-synuclein aggregates are described in the dorsal horn of the spinal cord. Nonetheless, no experimental investigation was carried out to document whether MPTP affects the sensory compartment of the spinal cord. Thus, in the present study, we investigated whether chronic exposure to small doses of MPTP (5 mg/kg/X2, daily, for 21 days) produces any pathological effect within dorsal spinal cord. This mild neurotoxic protocol produces a damage only to nigrostriatal dopamine (DA) axon terminals with no decrease in DA nigral neurons assessed by quantitative stereology. In these experimental conditions we documented a decrease in enkephalin-, calretinin-, calbindin D28K-, and parvalbumin-positive neurons within lamina I and II and the outer lamina III. Met-Enkephalin and substance P positive fibers are reduced in laminae I and II of chronically MPTP-treated mice. In contrast, as reported in PD patients, alpha-synuclein is markedly increased within spared neurons and fibers of lamina I and II after MPTP exposure. This is the first evidence that experimental parkinsonism produces the loss of specific neurons of the dorsal spinal cord, which are likely to be involved in sensory transmission and in pain modulation providing an experimental correlate for sensory and pain alterations in PD.


Asunto(s)
Intoxicación por MPTP/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Trastornos Parkinsonianos/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Ratones Endogámicos C57BL , Fenotipo
17.
Neurotox Res ; 37(2): 298-313, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31721049

RESUMEN

The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson's disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD. In the present study, we demonstrate that chronic exposure to low amounts of MPTP (10 mg/kg daily, × 21 days) significantly reduces motor neurons in the ventral lumbar spinal cord while increasing α-synuclein immune-staining within the ventral horn. Spinal cord involvement in MPTP-treated mice extends to Calbindin D28 KDa immune-reactive neurons other than motor neurons within lamina VII. These results were obtained in the absence of significant reduction of dopaminergic cell bodies in the Substantia Nigra pars compacta, while a slight decrease was documented in striatal tyrosine hydroxylase immune-staining. Thus, the present study highlights neuropathological similarities between dopaminergic neurons and spinal motor neurons and supports the pathological involvement of spinal cord in PD and experimental MPTP-induced parkinsonism. Remarkably, the toxic threshold for motor neurons appears to be lower compared with nigral dopaminergic neurons following a chronic pattern of MPTP intoxication. This sharply contrasts with previous studies showing that MPTP intoxication produces comparable neuronal loss within spinal cord and Substantia Nigra.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Parkinsonism Relat Disord ; 63: 143-148, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30796010

RESUMEN

INTRODUCTION: Alpha-synuclein (α-syn) aggregation is the pathological hallmark of Parkinson's Disease (PD). In this study, we measured α-syn total (α-syntotal), oligomeric α-syn (α-synolig) and α-synolig/α-syntotal ratio in the saliva of patients affected by PD and in age and sex-matched healthy subjects. We also compared salivary α-syntotal measured in PD with those detected in Progressive Supranuclear Palsy (PSP), in order to assess whether salivary α-syn can be used as a biomarker for PD and for the differential diagnosis between PD and PSP. METHODS: We studied 100 PD patients, 20 patients affected by PSP and 80 age- and sex-matched healthy subjects. ELISA analysis was performed using two commercial ELISA platforms and a specific ELISA assay for α-syn aggregates. RESULTS: We detected lower α-syntotal and higher α-synolig in PD than in healthy subjects. Conversely in PSP salivary α-syntotal concentration was comparable to that measured in healthy subjects. Receiver Operating Characteristic analyses revealed specific cut-off values able to differentiate PD patients from healthy subjects and PSP patients with high sensitivity and specificity. However, there was no significant correlation between clinical and molecular data. CONCLUSION: Salivary α-syn detection could be a promising and easily accessible biomarker for PD and for the differential diagnosis between PD and PSP.


Asunto(s)
Enfermedad de Parkinson/diagnóstico , Parálisis Supranuclear Progresiva/diagnóstico , alfa-Sinucleína/metabolismo , Anciano , Biomarcadores/metabolismo , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Saliva/metabolismo , Parálisis Supranuclear Progresiva/metabolismo
20.
PLoS One ; 11(3): e0151156, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27011009

RESUMEN

In Parkinson's disease (PD), alpha-synuclein (a-syn) can be detected in biological fluids including saliva. Although previous studies found reduced a-syn total (a-syntotal) concentration in saliva of PD patients, no studies have previously examined salivary a-syn oligomers (a-synolig) concentrations or assessed the correlation between salivary a-syntotal, a-synolig and clinical features in a large cohort of PD patients. Is well known that a-synolig exerts a crucial neurotoxic effect in PD. We collected salivary samples from 60 PD patients and 40 age- and sex-comparable healthy subjects. PD was diagnosed according to the United Kingdom Brain Bank Criteria. Samples of saliva were analyzed by specific anti-a-syn and anti-oligomeric a-syn ELISA kits. A complete clinical evaluation of each patient was performed using MDS-Unified Parkinson's Disease Rating Scale, Beck Depression Inventory, Montreal Cognitive Assessment and Frontal Assessment Battery. Salivary a-syntotal was lower, whereas a-synolig was higher in PD patients than healthy subjects. The a-synolig/a-syntotal ratio was also higher in patients than in healthy subjects. Salivary a-syntotal concentration negatively correlated with that of a-synolig and correlated with several patients' clinical features. In PD, decreased salivary concentration of a-syntotal may reflect the reduction of a-syn monomers (a-synmon), as well as the formation of insoluble intracellular inclusions and soluble oligomers. The combined detection of a-syntotal and a-synolig in the saliva might help the early diagnosis of PD.


Asunto(s)
Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , Saliva/metabolismo , alfa-Sinucleína/análisis , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Biomarcadores/metabolismo , Estudios de Cohortes , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Saliva/química , Solubilidad , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...