Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Br J Anaesth ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38862383

RESUMEN

BACKGROUND: Preclinical studies suggest that early exposure to anaesthesia alters the visual system in mice and non-human primates. We investigated whether exposure to general anaesthesia leads to visual attention processing changes in children, which could potentially impact essential life skills, including learning. METHODS: This was a post hoc analysis of data from the APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort study. A total of 24 healthy 9-10-yr-old children who were or were not exposed to general anaesthesia (for surgery) by a mean age of 3.8 (2.6) yr performed a visual attention task to evaluate ability to process either local details or general global visual information. Whether children were distracted by visual interference during global and local information processing was also assessed. RESULTS: Participants included in the analyses (n=12 participants exposed to general anaesthesia and n=12 controls) successfully completed (>90% of correct answers) the trial tasks. Children from both groups were equally distracted by visual interference. However, children who had been exposed to general anaesthesia were more attracted to global visual information than were control children (P=0.03). CONCLUSIONS: These findings suggest lasting effects of early-life exposure to general anaesthesia on visuospatial abilities. Further investigations of the mechanisms by which general anaesthesia could have delayed effects on how children perceive their visual environment are needed.

2.
Nat Commun ; 15(1): 5070, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871729

RESUMEN

In acute ischemic stroke, even when successful recanalization is obtained, downstream microcirculation may still be obstructed by microvascular thrombosis, which is associated with compromised brain reperfusion and cognitive decline. Identifying these microthrombi through non-invasive methods remains challenging. We developed the PHySIOMIC (Polydopamine Hybridized Self-assembled Iron Oxide Mussel Inspired Clusters), a MRI-based contrast agent that unmasks these microthrombi. In a mouse model of thromboembolic ischemic stroke, our findings demonstrate that the PHySIOMIC generate a distinct hypointense signal on T2*-weighted MRI in the presence of microthrombi, that correlates with the lesion areas observed 24 hours post-stroke. Our microfluidic studies reveal the role of fibrinogen in the protein corona for the thrombosis targeting properties. Finally, we observe the biodegradation and biocompatibility of these particles. This work demonstrates that the PHySIOMIC particles offer an innovative and valuable tool for non-invasive in vivo diagnosis and monitoring of microthrombi, using MRI during ischemic stroke.


Asunto(s)
Medios de Contraste , Modelos Animales de Enfermedad , Compuestos Férricos , Indoles , Imagen por Resonancia Magnética , Polímeros , Trombosis , Animales , Polímeros/química , Imagen por Resonancia Magnética/métodos , Indoles/química , Ratones , Medios de Contraste/química , Compuestos Férricos/química , Trombosis/diagnóstico por imagen , Masculino , Accidente Cerebrovascular/diagnóstico por imagen , Humanos , Fibrinógeno/metabolismo , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Ratones Endogámicos C57BL , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología
3.
Brain Behav Immun ; 119: 381-393, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604270

RESUMEN

INTRODUCTION: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Recent evidence suggests that lymphocyte trafficking in the intestines could play a key role in its etiology. Nevertheless, it is not clear how intestinal tissue is involved in the disease onset nor its evolution. In the present study, we aimed to evaluate intestinal inflammation dynamic throughout the disease course and its potential impact on disease progression. METHODS: We used tissue immunophenotyping (immunohistofluorescence and flow cytometry) and a recently described molecular magnetic resonance imaging (MRI) method targeting mucosal addressin cell adhesion molecule-1 (MAdCAM-1) to assess intestinal inflammation in vivo in two distinct animal models of MS (Experimental Autoimmune Encephalomyelitis - EAE) at several time points of disease progression. RESULTS: We report a positive correlation between disease severity and MAdCAM-1 MRI signal in two EAE models. Moreover, high MAdCAM-1 MRI signal during the asymptomatic phase is associated with a delayed disease onset in progressive EAE and to a lower risk of conversion to a secondary-progressive form in relapsing-remitting EAE. During disease evolution, in line with a bi-directional immune communication between the gut and the central nervous system, we observed a decrease in T-CD4+ and B lymphocytes in the ileum concomitantly with their increase in the spinal cord. CONCLUSION: Altogether, these data unveil a crosstalk between intestinal and central inflammation in EAE and support the use of molecular MRI of intestinal MAdCAM-1 as a new biomarker for prognostic in MS patients.


Asunto(s)
Biomarcadores , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Mucoproteínas , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Ratones , Biomarcadores/metabolismo , Mucoproteínas/metabolismo , Femenino , Pronóstico , Progresión de la Enfermedad , Moléculas de Adhesión Celular/metabolismo , Intestinos/diagnóstico por imagen , Intestinos/patología , Inmunoglobulinas/metabolismo , Inflamación/metabolismo , Inflamación/diagnóstico por imagen , Mucosa Intestinal/metabolismo , Mucosa Intestinal/diagnóstico por imagen
4.
Cell Death Dis ; 15(4): 261, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609369

RESUMEN

Recombinant tissue-type plasminogen activator (r-tPA/Actilyse) stands as the prevailing pharmacological solution for treating ischemic stroke patients, of whom because their endogenous circulating tPA alone is not sufficient to rescue reperfusion and to promote favorable outcome. Beyond the tPA contributed by circulating endothelial cells and hepatocytes, neurons also express tPA, sparking debates regarding its impact on neuronal fate ranging from pro-survival to neurotoxic properties. In order to investigate the role of neuronal tPA during brain injuries, we developed models leading to its conditional deletion in neurons, employing AAV9-pPlat-GFP and AAV9-pPlat-Cre-GFP along with tPA floxed mice. These models were subjected to N-methyl-D-aspartate (NMDA)-induced excitotoxicity or thromboembolic ischemic stroke in mice. Initially, we established that our AAV9 constructs selectively transduce neurons, bypassing other brain cell types. Subsequently, we demonstrated that tPA-expressing neurons exhibit greater resistance against NMDA-induced excitotoxicity compared to tPA negative neurons. The targeted removal of tPA in neurons heightened the susceptibility of these neurons to cell death and prevented a paracrine neurotoxic effect on tPA non-expressing neurons. Under ischemic conditions, the self-neuroprotective influence of tPA encompassed both excitatory (GFP+/Tbr1+) and inhibitory (GFP+/GABA+) neurons. Our data indicate that endogenous neuronal tPA is a protective or deleterious factor against neuronal death in an excitotoxic/ischemic context, depending on whether it acts as an autocrine or a paracrine mediator.


Asunto(s)
Accidente Cerebrovascular Isquémico , Síndromes de Neurotoxicidad , Animales , Ratones , Células Endoteliales , N-Metilaspartato/farmacología , Neuronas , Activador de Tejido Plasminógeno
5.
Biol Direct ; 19(1): 26, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582839

RESUMEN

Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reactive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR) activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings indicate that the pharmacological inhibition of mTORC1 in the acute phase of ischemia may provide an alternative strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.


Asunto(s)
Isquemia Encefálica , Microglía , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Enfermedades Neuroinflamatorias , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Serina-Treonina Quinasas TOR/uso terapéutico , Isquemia , Sirolimus/farmacología , Sirolimus/uso terapéutico , Mamíferos
6.
J Cardiovasc Pharmacol ; 83(6): 580-587, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467037

RESUMEN

ABSTRACT: Multimers of von Willebrand factor play a critical role in various processes inducing morbidity and mortality in cardiovascular-risk patients. With the ability to reduce von Willebrand factor multimers, N-acetylcysteine (NAC) could reduce mortality in patients undergoing coronary catheterization or cardiac surgery. However, its impact in perioperative period has never been studied so far in regard of its potential cardiovascular benefits. Then, 4 databases were searched for randomized controlled trials that compared in-hospital mortality between an experimental group, with NAC, and a control group without NAC, in patients undergoing coronary catheterization or cardiac surgery. The primary efficacy outcome was in-hospital mortality. Secondary outcomes were the occurrence of thrombotic events, major cardiovascular events, myocardial infarction, and contrast-induced nephropathy. The safety outcome was occurrence of hemorrhagic events. Nineteen studies totaling 3718 patients were included. Pooled analysis demonstrated a reduction of in-hospital mortality associated with NAC: odds ratio, 0.60; 95% confidence interval, 0.39-0.92; P = 0.02. The occurrence of secondary outcomes was not significantly reduced with NAC except for contrast-induced nephropathy. No difference was reported for hemorrhagic events. Subgroup analyses revealed a life-saving effect of NAC in a dose-dependent manner with reduction of in-hospital mortality for the NAC high-dose group, but not for the NAC standard-dose (<3500-mg) group. In conclusion, without being able to conclude on the nature of the mechanism involved, our review suggests a benefit of NAC in cardiovascular-risk patients in perioperative period in terms of mortality and supports prospective confirmatory studies.


Asunto(s)
Acetilcisteína , Cateterismo Cardíaco , Procedimientos Quirúrgicos Cardíacos , Mortalidad Hospitalaria , Humanos , Cateterismo Cardíaco/efectos adversos , Cateterismo Cardíaco/mortalidad , Acetilcisteína/efectos adversos , Acetilcisteína/uso terapéutico , Acetilcisteína/administración & dosificación , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Procedimientos Quirúrgicos Cardíacos/mortalidad , Resultado del Tratamiento , Factores de Riesgo , Medición de Riesgo , Femenino , Ensayos Clínicos Controlados Aleatorios como Asunto , Masculino , Anciano , Persona de Mediana Edad
7.
Nat Sci Sleep ; 16: 233-245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476462

RESUMEN

Objective: Poor sleep and high levels of repetitive negative thinking (RNT), including future-directed (ie, worry) and past-directed (ie, brooding) negative thoughts, have been associated with markers of dementia risk. The relationship between RNT and sleep health in older adults is unknown. This study aimed to investigate this association and its specificities including multiple dimensions of objective and subjective sleep. Methods: This study used a cross sectional quantitative design with baseline data from 127 cognitively healthy older adults (mean age 69.4 ± 3.8 years; 63% female) who took part in the Age-Well clinical trial, France. RNT (ie, worry and brooding) levels were measured using the Penn State Worry Questionnaire and the Rumination Response Scale (brooding subscale). Polysomnography was used to assess sleep objectively, and the Pittsburgh Sleep Quality Index and the St. Mary's Hospital Sleep Questionnaire were used to measure sleep subjectively. In primary analyses the associations between RNT and sleep (ie, objective sleep duration, fragmentation and efficiency and subjective sleep disturbance) were assessed via adjusted regressions. Results: Higher levels of RNT were associated with poorer objective sleep efficiency (worry: ß=-0.32, p<0.001; brooding: ß=-0.26, p=0.002), but not objective sleep duration, fragmentation, or subjective sleep disturbance. Additional analyses, however, revealed differences in levels of worry between those with short, compared with typical and long objective sleep durations (p < 0.05). Conclusion: In cognitively healthy older adults, RNT was associated with sleep characteristics that have been implicated in increased dementia risk. It will take additional research to ascertain the causal link between RNT and sleep characteristics and how they ultimately relate to the risk of developing dementia.

8.
ACS Pharmacol Transl Sci ; 7(3): 680-692, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38481701

RESUMEN

While stroke represents one of the main causes of death worldwide, available effective drug treatment options remain limited to classic thrombolysis with recombinant tissue plasminogen activator (rtPA) for arterial-clot occlusion. Following stroke, multiple pathways become engaged in producing a vicious proinflammatory cycle through the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1) and heat shock protein 70 kDa (HSP72). HMGB1, in particular, can activate proinflammatory cytokine production when acetylated (AcHMGB1), a form that prefers cytosolic localization and extracellular release. This study aimed at determining how HMGB1 and HSP72 are modulated and affected following treatment with the anti-inflammatory compound resveratrol and novel platelet membrane-derived nanocarriers loaded with rtPA (CSM@rtPA) recently developed by our group for ischemic artery recanalization. Under ischemic conditions of oxygen-glucose deprivation (OGD), nuclear abundance of HMGB1 and AcHMGB1 in microglia and macrophages decreased, whereas treatment with CSM@rtPA did not alter nuclear or cytosolic abundance. Resveratrol treatment markedly increased the cytosolic abundance of HSP72 in microglia. Using proximity ligation assays, we determined that HSP72 interacted with HMGB1 and with acetylated HMGB1. The interaction was differentially affected under the OGD conditions. Resveratrol treatment under the OGD further decreased HSP72-HMGB1 interactions, whereas, in contrast, treatment increased HSP72-AcHMGB1 interactions in microglia. This study points out a salient molecular interaction suited for a two-pronged nanotherapeutic intervention in stroke: enhancement of rtPA's thrombolytic activity and modulation of cytosolic interactions between HMGB1 and HSP72 by resveratrol.

9.
J Cereb Blood Flow Metab ; : 271678X241237427, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436292

RESUMEN

Alteplase (rtPA) remains the standard thrombolytic drug for acute ischemic stroke. However, new rtPA-derived molecules, such as tenecteplase (TNK), with prolonged half-lives following a single bolus administration, have been developed. Although TNK is currently under clinical evaluation, the limited preclinical data highlight the need for additional studies to elucidate its benefits. The toxicities of rtPA and TNK were evaluated in endothelial cells, astrocytes, and neuronal cells. In addition, their in vivo efficacy was independently assessed at two research centers using an ischemic thromboembolic mouse model. Both therapies were tested via early (20 and 30 min) and late administration (4 and 4.5 h) after stroke. rtPA, but not TNK, caused cell death only in neuronal cultures. Mice were less sensitive to thrombolytic therapies than humans, requiring doses 10-fold higher than the established clinical dose. A single bolus dose of 2.5 mg/kg TNK led to an infarct reduction similar to perfusion with 10 mg/kg of rtPA. Early administration of TNK decreased the hemorrhagic transformations compared to that by the early administration of rtPA; however, this result was not obtained following late administration. These two independent preclinical studies support the use of TNK as a promising reperfusion alternative to rtPA.

10.
Acta Neuropathol Commun ; 12(1): 43, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500201

RESUMEN

Intracerebral aneurysms (IAs) are pathological dilatations of cerebral arteries whose rupture leads to subarachnoid hemorrhage, a significant cause of disability and death. Inflammation is recognized as a critical contributor to the formation, growth, and rupture of IAs; however, its precise actors have not yet been fully elucidated. Here, we report CNS-associated macrophages (CAMs), also known as border-associated macrophages, as one of the key players in IA pathogenesis, acting as critical mediators of inflammatory processes related to IA ruptures. Using a new mouse model of middle cerebral artery (MCA) aneurysms we show that CAMs accumulate in the IA walls. This finding was confirmed in a human MCA aneurysm obtained after surgical clipping, together with other pathological characteristics found in the experimental model including morphological changes and inflammatory cell infiltration. In addition, in vivo longitudinal molecular MRI studies revealed vascular inflammation strongly associated with the aneurysm area, i.e., high expression of VCAM-1 and P-selectin adhesion molecules, which precedes and predicts the bleeding extent in the case of IA rupture. Specific CAM depletion by intracerebroventricular injection of clodronate liposomes prior to IA induction reduced IA formation and rupture rate. Moreover, the absence of CAMs ameliorated the outcome severity of IA ruptures resulting in smaller hemorrhages, accompanied by reduced neutrophil infiltration. Our data shed light on the unexplored role of CAMs as main actors orchestrating the progression of IAs towards a rupture-prone state.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Ratones , Animales , Humanos , Aneurisma Intracraneal/etiología , Aneurisma Intracraneal/metabolismo , Aneurisma Intracraneal/patología , Inflamación/patología , Sistema Nervioso Central/metabolismo , Factores de Riesgo , Macrófagos/metabolismo , Aneurisma Roto/complicaciones , Aneurisma Roto/metabolismo , Aneurisma Roto/patología
11.
Acta Neuropathol ; 147(1): 37, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347231

RESUMEN

There are several cellular and acellular structural barriers associated with the brain interfaces, which include the dura, the leptomeninges, the perivascular space and the choroid plexus epithelium. Each structure is enriched by distinct myeloid populations, which mainly originate from erythromyeloid precursors (EMP) in the embryonic yolk sac and seed the CNS during embryogenesis. However, depending on the precise microanatomical environment, resident myeloid cells differ in their marker profile, turnover and the extent to which they can be replenished by blood-derived cells. While some EMP-derived cells seed the parenchyma to become microglia, others engraft the meninges and become CNS-associated macrophages (CAMs), also referred to as border-associated macrophages (BAMs), e.g., leptomeningeal macrophages (MnMΦ). Recent data revealed that MnMΦ migrate into perivascular spaces postnatally where they differentiate into perivascular macrophages (PvMΦ). Under homeostatic conditions in pathogen-free mice, there is virtually no contribution of bone marrow-derived cells to MnMΦ and PvMΦ, but rather to macrophages of the choroid plexus and dura. In neuropathological conditions in which the blood-brain barrier is compromised, however, an influx of bone marrow-derived cells into the CNS can occur, potentially contributing to the pool of CNS myeloid cells. Simultaneously, resident CAMs may also proliferate and undergo transcriptional and proteomic changes, thereby, contributing to the disease outcome. Thus, both resident and infiltrating myeloid cells together act within their microenvironmental niche, but both populations play crucial roles in the overall disease course. Here, we summarize the current understanding of the sources and fates of resident CAMs in health and disease, and the role of the microenvironment in influencing their maintenance and function.


Asunto(s)
Macrófagos , Proteómica , Ratones , Animales , Macrófagos/patología , Sistema Nervioso Central/patología , Microglía , Meninges
12.
J Inflamm (Lond) ; 21(1): 4, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355547

RESUMEN

Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed. Therefore, using tPA-deficient mice, we have analysed the effect of lipopolysaccharide (LPS) challenge on the phenotype of myeloid cells including neutrophils, macrophages and dendritic cells (DCs) in spleen. We found that LPS treatment upregulated the frequency of major histocompatibility class two (MHCII+) macrophages but also, paradoxically, induced a deep downregulation of MHCII molecule level on macrophages and on conventional dendritic cells 2 (cDC2). Expression level of the CD11b integrin, known as a tPA receptor, was upregulated by LPS on MHCII+ macrophages and cDC2, suggesting that tPA effects could be amplified during inflammation. In tPA-/- mice under inflammatory conditions, expression of costimulatory CD86 molecules on MHCII+ macrophages was decreased compared to WT mice, while in steady state the expression of MHCII molecules was higher on macrophages. Finally, we reported that tPA deficiency slightly modified the phenotype of DCs and T cells in acute inflammatory conditions. Overall, our findings indicate that in vivo, LPS injection had an unexpectedly bimodal effect on MHCII expression on macrophages and DCs that consequently might affect adaptive immunity. tPA could also participate in the regulation of the T cell response by modulating the levels of CD86 and MHCII molecules on macrophages.

13.
Neuroscience ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301738
14.
Neuron ; 112(9): 1456-1472.e6, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412858

RESUMEN

Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke.


Asunto(s)
Circulación Colateral , Accidente Cerebrovascular Isquémico , Meninges , Reperfusión , Animales , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/terapia , Ratones , Circulación Colateral/fisiología , Humanos , Reperfusión/métodos , Meninges/irrigación sanguínea , Masculino , Circulación Cerebrovascular/fisiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Encéfalo/irrigación sanguínea , Trombectomía/métodos
15.
Stroke ; 55(3): 747-756, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288607

RESUMEN

BACKGROUND: Intravenous injection of alteplase, a recombinant tPA (tissue-type plasminogen activator) as a thrombolytic agent has revolutionized ischemic stroke management. However, tPA is a more complex enzyme than expected, being for instance able to promote thrombolysis, but at the same time, also able to influence neuronal survival and to affect the integrity of the blood-brain barrier. Accordingly, the respective impact of endogenous tPA expressed/present in the brain parenchyma versus in the circulation during stroke remains debated. METHODS: To address this issue, we used mice with constitutive deletion of tPA (tPANull [tPA-deficient mice]) or conditional deletion of endothelial tPA (VECad [vascular endothelial-Cadherin-Cre-recombinase]-Cre∆tPA). We also developed parabioses between tPANull and wild-type mice (tPAWT), anticipating that a tPAWT donor would restore levels of tPA to normal ones, in the circulation but not in the brain parenchyma of a tPANull recipient. Stroke outcomes were investigated by magnetic resonance imaging in a thrombo-embolic or a thrombotic stroke model, induced by local thrombin injection or FeCl3 application on the endothelium, respectively. RESULTS: First, our data show that endothelial tPA, released into the circulation after stroke onset, plays an overall beneficial role following thrombo-embolic stroke. Accordingly, after 24 hours, tPANull/tPANull parabionts displayed less spontaneous recanalization and reperfusion and larger infarcts compared with tPAWT/tPAWT littermates. However, when associated to tPAWT littermates, tPANull mice had similar perfusion deficits, but less severe brain infarcts. In the thrombotic stroke model, homo- and hetero-typic parabionts did not differ in the extent of brain damages and did not differentially recanalize and reperfuse. CONCLUSIONS: Together, our data reveal that during thromboembolic stroke, endogenous circulating tPA from endothelial cells sustains a spontaneous recanalization and reperfusion of the tissue, thus, limiting the extension of ischemic lesions. In this context, the impact of endogenous parenchymal tPA is limited.


Asunto(s)
Accidente Cerebrovascular , Accidente Cerebrovascular Trombótico , Animales , Ratones , Modelos Animales de Enfermedad , Células Endoteliales , Endotelio , Ratones Noqueados , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/metabolismo
16.
J Nanobiotechnology ; 22(1): 10, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166940

RESUMEN

BACKGROUND: Intravenous administration of fibrinolytic drugs, such as recombinant tissue plasminogen activator (rtPA) is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and risk of hemorrhagic transformations. Platelet membrane-based nanocarriers have received increasing attention for ischemic stroke therapies, as they have natural thrombus-targeting activity, can prolong half-life of the fibrinolytic therapy, and reduce side effects. In this study we have gone further in developing platelet-derived nanocarriers (defined as cellsomes) to encapsulate and protect rtPA from degradation. Following lyophilization and characterization, their formulation properties, biocompatibility, therapeutic effect, and risk of hemorrhages were later investigated in a thromboembolic model of stroke in mice. RESULTS: Cellsomes of 200 nm size and loaded with rtPA were generated from membrane fragments of human platelets. The lyophilization process did not influence the nanocarrier size distribution, morphology, and colloidal stability conferring particle preservation and long-term storage. Encapsulated rtPA in cellsomes and administered as a single bolus showed to be as effective as a continuous clinical perfusion of free rtPA at equal concentration, without increasing the risk of hemorrhagic transformations or provoking an inflammatory response. CONCLUSIONS: This study provides evidence for the safe and effective use of lyophilized biomimetic platelet-derived nanomedicine for precise thrombolytic treatment of acute ischemic stroke. In addition, this new nanoformulation could simplify the clinical use of rtPA as a single bolus, being easier and less time-consuming in an emergency setting than a treatment perfusion, particularly in stroke patients. We have successfully addressed one of the main barriers to drug application and commercialization, the long-term storage of nanomedicines, overcoming the potential chemical and physical instabilities of nanomedicines when stored in an aqueous buffer.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratones , Animales , Activador de Tejido Plasminógeno , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Terapia Trombolítica/efectos adversos , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología
17.
Blood Adv ; 8(5): 1330-1344, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38190586

RESUMEN

ABSTRACT: The pharmacological intervention for ischemic stroke hinges on intravenous administration of the recombinant tissue-type plasminogen activator (rtPA, Alteplase/Actilyse) either as a standalone treatment or in conjunction with thrombectomy. However, despite its clinical significance, broader use of rtPA is constrained because of the risk of hemorrhagic transformations (HTs). Furthermore, the presence of diabetes or chronic hyperglycemia is associated with an elevated risk of HT subsequent to thrombolysis. This detrimental impact of tPA on the neurovascular unit in patients with hyperglycemia has been ascribed to its capacity to induce endothelial N-methyl-D-aspartate receptor (NMDAR) signaling, contributing to compromised blood-brain barrier integrity and neuroinflammatory processes. In a mouse model of thromboembolic stroke with chronic hyperglycemia, we assessed the effectiveness of rtPA and N-acetylcysteine (NAC) as thrombolytic agents. We also tested the effect of blocking tPA/NMDAR signaling using a monoclonal antibody, Glunomab. Magnetic resonance imaging, speckle contrast imaging, flow cytometry, and behavioral tasks were used to evaluate stroke outcomes. In hyperglycemic animals, treatment with rtPA resulted in lower recanalization rates and increased HTs. Conversely, NAC treatment reduced lesion sizes while mitigating HTs. After a single administration, either in standalone or combined with rtPA-induced thrombolysis, Glunomab reduced brain lesion volumes, HTs, and neuroinflammation after stroke, translating into improved neurological outcomes. Additionally, we demonstrated the therapeutic efficacy of Glunomab in combination with NAC or as a standalone strategy in chronic hyperglycemic animals. Counteracting tPA-dependent endothelial NMDAR signaling limits ischemic damages induced by both endogenous and exogenous tPA, including HTs and inflammatory processes after ischemic stroke in hyperglycemic animals.


Asunto(s)
Hiperglucemia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Humanos , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Ratones Obesos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Hemorragia , Inflamación/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico
18.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38227830

RESUMEN

STUDY OBJECTIVES: In aging, reduced delta power (0.5-4 Hz) during N2 and N3 sleep has been associated with gray matter (GM) atrophy and hypometabolism within frontal regions. Some studies have also reported associations between N2 and N3 sleep delta power in specific sub-bands and amyloid pathology. Our objective was to better understand the relationships between spectral power in delta sub-bands during N2-N3 sleep and brain integrity using multimodal neuroimaging. METHODS: In-home polysomnography was performed in 127 cognitively unimpaired older adults (mean age ±â€…SD: 69.0 ±â€…3.8 years). N2-N3 sleep EEG power was calculated in delta (0.5-4 Hz), slow delta (0.5-1 Hz), and fast delta (1-4 Hz) frequency bands. Participants also underwent magnetic resonance imaging and Florbetapir-PET (early and late acquisitions) scans to assess GM volume, brain perfusion, and amyloid burden. Amyloid accumulation over ~21 months was also quantified. RESULTS: Higher delta power was associated with higher GM volume mainly in fronto-cingular regions. Specifically, slow delta power was positively correlated with GM volume and perfusion in these regions, while the inverse association was observed with fast delta power. Delta power was neither associated with amyloid burden at baseline nor its accumulation over time, whatever the frequency band considered. CONCLUSIONS: Our results show that slow delta is particularly associated with preserved brain structure, and highlight the importance of analyzing delta power sub-bands to better understand the associations between delta power and brain integrity. Further longitudinal investigations with long follow-ups are needed to disentangle the associations among sleep, amyloid pathology, and dementia risk in older populations. CLINICAL TRIAL INFORMATION: Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL in supplemental materials. REGISTRATION: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.


Asunto(s)
Sueño de Onda Lenta , Anciano , Humanos , Encéfalo/diagnóstico por imagen , Electroencefalografía , Neuroimagen , Polisomnografía , Sueño , Fases del Sueño
19.
J Cereb Blood Flow Metab ; 44(3): 333-344, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38126356

RESUMEN

Tomographic perfusion imaging techniques are integral to translational stroke research paradigms that advance our understanding of the disease. Functional ultrasound (fUS) is an emerging technique that informs on cerebral blood volume (CBV) through ultrasensitive Doppler and flow velocity (CBFv) through ultrafast localization microscopy. It is not known how experimental results compare with a classical CBV-probing technique such as dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI). To that end, we assessed hemodynamics based on uUS (n = 6) or DSC-MRI (n = 7) before, during and up to three hours after 90-minute filament-induced middle cerebral artery occlusion (MCAO) in rats. Recanalization was followed by a brief hyperperfusion response, after which CBV and CBFv temporarily normalized but progressively declined after one hour in the lesion territory. DSC-MRI data corroborated the incomplete restoration of CBV after recanalization, which may have been caused by the free-breathing anesthetic regimen. During occlusion, MCAO-induced hypoperfusion was more discrepant between either technique, likely attributable to artefactual signal mechanisms related to slow flow, and processing algorithms employed for either technique. In vivo uUS- and DSC-MRI-derived measures of CBV enable serial whole-brain assessment of post-stroke hemodynamics, but readouts from both techniques need to be interpreted cautiously in situations of very low blood flow.


Asunto(s)
Volumen Sanguíneo Cerebral , Accidente Cerebrovascular , Ratas , Animales , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Medios de Contraste
20.
Biomaterials ; 303: 122385, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37952499

RESUMEN

Systemic injection of thrombolytic drugs is the gold standard treatment for non-invasive blood clot resolution. The most serious risks associated with the intravenous injection of tissue plasminogen activator-like proteins are the bleeding complication and the dose related neurotoxicity. Indeed, the drug has to be injected in high concentrations due to its short half-life, the presence of its natural blood inhibitor (PAI-1) and the fast hepatic clearance (0.9 mg/kg in humans, 10 mg/kg in mouse models). Overall, there is a serious need for a dose-reduced targeted treatment to overcome these issues. We present in this article a new acoustic cavitation-based method for polymer MBs synthesis, three times faster than current hydrodynamic-cavitation method. The generated MBs are ultrasound responsive, stable and biocompatible. Their functionalization enabled the efficient and targeted treatment of stroke, without side effects. The stabilizing shell of the MBs is composed of Poly-Isobutyl Cyanoacrylate (PIBCA), copolymerized with fucoidan. Widely studied for its targeting properties, fucoidan exhibit a nanomolar affinity for activated endothelium and activated platelets (P-selectins). Secondly, the thrombolytic agent (rtPA) was loaded onto microbubbles (MBs) with a simple adsorption protocol. Hence, the present study validated the in vivo efficiency of rtPA-loaded Fuco MBs to be over 50 % more efficient than regular free rtPA injection for stroke resolution. In addition, the relative injected rtPA grafted onto targeting MBs was 1/10th of the standard effective dose (1 mg/kg in mouse). As a result, no hemorrhagic event, BBB leakage nor unexpected tissue distribution were observed.


Asunto(s)
Accidente Cerebrovascular , Activador de Tejido Plasminógeno , Humanos , Animales , Ratones , Activador de Tejido Plasminógeno/uso terapéutico , Microburbujas , Polímeros , Fibrinolíticos/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...