RESUMEN
The use of compounds produced by hosts or symbionts for defence against antagonists has been identified in many organisms, including in fungus-farming termites (Macrotermitinae). The obligate mutualistic fungus Termitomyces plays a pivotal role in plant biomass decomposition and as the primary food source for these termites. Despite the isolation of various specialized metabolites from different Termitomyces species, our grasp of their natural product repertoire remains incomplete. To address this knowledge gap, we conducted a comprehensive analysis of 39 Termitomyces genomes, representing 21 species associated with members of five termite host genera. We identified 754 biosynthetic gene clusters (BGCs) coding for specialized metabolites and categorized 660 BGCs into 61 biosynthetic gene cluster families (GCFs) spanning five compound classes. Seven GCFs were shared by all 21 Termitomyces species and 21 GCFs were present in all genomes of subsets of species. Evolutionary constraint analyses on the 25 most abundant GCFs revealed distinctive evolutionary histories, signifying that millions of years of termite-fungus symbiosis have influenced diverse biosynthetic pathways. This study unveils a wealth of non-random and largely undiscovered chemical potential within Termitomyces and contributes to our understanding of the intricate evolutionary trajectories of biosynthetic gene clusters in the context of long-standing symbiosis.
Asunto(s)
Genómica , Isópteros , Familia de Multigenes , Simbiosis , Termitomyces , Isópteros/microbiología , Animales , Termitomyces/genética , Termitomyces/metabolismo , Evolución Molecular , Filogenia , Genoma Fúngico , Vías Biosintéticas/genéticaRESUMEN
Contagious diseases are a major threat to societies in which individuals live in close contact. Social insects have evolved collective defense behaviors, such as social care or isolation of infected workers, that prevent outbreaks of pathogens. It has thus been suggested that individual immunity is reduced in species with such 'social immunity'. However, this hypothesis has not been tested functionally. Here, we characterize the immune response of the ant Lasius niger using a combination of genomic analysis, experimental infections, gene expression quantification, behavioural observations and pathogen quantifications. We uncover a striking specialization of immune responses towards different pathogens. Systemic individual immunity is effective against opportunistic bacterial infections, which are not covered by social immunity, but is not elicited upon fungal infections, which are effectively controlled by social immunity. This specialization suggests that immune layers have evolved complementary functions predicted to ensure the most cost-effective response against a wide range of pathogens.
Asunto(s)
Hormigas , Conducta Social , Hormigas/inmunología , Hormigas/microbiología , Hormigas/fisiología , Animales , Conducta Animal , Interacciones Huésped-Patógeno/inmunologíaRESUMEN
The naturally selected fungal crop (Leucoagaricus gongylophorus) farmed by leafcutter ants shows striking parallels with artificially selected plant crops domesticated by humans (e.g. polyploidy, engorged nutritional rewards, and dependence on cultivation). To date, poorly resolved L. gongylophorus genome assemblies based on short-read sequencing have constrained hypotheses about how millions of years under cultivation by ants shaped the fungal crop genome and potentially drove domestication. We use PacBio HiFi sequencing of L. gongylophorus from the leafcutter ant Atta colombica to identify 18 putatively novel biosynthetic gene clusters that likely cemented life as a cultivar (e.g. plant fragment degradation, ant-farmer communication, and antimicrobial defense). Comparative analyses with cultivated and free-living fungi showed genomic signatures of stepwise domestication transitions: (i) free-living to ant-cultivated: loss of genes conferring stress response and detoxification; (ii) hyphal food to engorged nutritional rewards: expansions of genes governing cellular homeostasis, carbohydrate metabolism, and siderophore biosynthesis; and (iii) detrital provisioning to freshly cut plant fragments: gene expansions promoting cell wall biosynthesis, fatty acid metabolism, and DNA repair. Comparisons across L. gongylophorus fungi farmed by 3 leafcutter ant species highlight genomic signatures of exclusively vertical clonal propagation and widespread transposable element activity. These results show how natural selection can shape domesticated cultivar genomes toward long-term ecological resilience of farming systems that have thrived across millennia.
Asunto(s)
Hormigas , Domesticación , Genoma Fúngico , Hormigas/genética , Animales , Familia de MultigenesRESUMEN
MOTIVATION: Gene clusters, defined as a set of genes encoding functionally related proteins, are abundant in eukaryotic genomes. Despite the increasing availability of chromosome-level genomes, the comprehensive analysis of gene family evolution remains largely unexplored, particularly for large and highly dynamic gene families or those including very recent family members. These challenges stem from limitations in genome assembly contiguity, particularly in repetitive regions such as large gene clusters. Recent advancements in sequencing technology, such as long reads and chromatin contact mapping, hold promise in addressing these challenges. RESULTS: To facilitate the identification, analysis, and visualization of physically clustered gene family members within chromosome-level genomes, we introduce GALEON, a user-friendly bioinformatic tool. GALEON identifies gene clusters by studying the spatial distribution of pairwise physical distances among gene family members along with the genome-wide gene density. The pipeline also enables the simultaneous analysis and comparison of two gene families and allows the exploration of the relationship between physical and evolutionary distances. This tool offers a novel approach for studying the origin and evolution of gene families. AVAILABILITY AND IMPLEMENTATION: GALEON is freely available from https://www.ub.edu/softevol/galeon and https://github.com/molevol-ub/galeon.
Asunto(s)
Biología Computacional , Familia de Multigenes , Programas Informáticos , Biología Computacional/métodos , Genoma , Genómica/métodos , Evolución Molecular , HumanosRESUMEN
The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.
Asunto(s)
Elementos Transponibles de ADN , Genómica , Evolución Biológica , Elementos Transponibles de ADN/genética , Sintenía/genéticaRESUMEN
The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (â¼194-135â ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.
Asunto(s)
Aves , Especies en Peligro de Extinción , Animales , Aves/genética , Demografía , Genómica , Humanos , Mamíferos , Conducta PredatoriaRESUMEN
The dark-eyed junco (Junco hyemalis) is one of the most common passerines of North America, and has served as a model organism in studies related to ecophysiology, behavior, and evolutionary biology for over a century. It is composed of at least 6 distinct, geographically structured forms of recent evolutionary origin, presenting remarkable variation in phenotypic traits, migratory behavior, and habitat. Here, we report a high-quality genome assembly and annotation of the dark-eyed junco generated using a combination of shotgun libraries and proximity ligation Chicago and Dovetail Hi-C libraries. The final assembly is â¼1.03 Gb in size, with 98.3% of the sequence located in 30 full or nearly full chromosome scaffolds, and with a N50/L50 of 71.3 Mb/5 scaffolds. We identified 19,026 functional genes combining gene prediction and similarity approaches, of which 15,967 were associated to GO terms. The genome assembly and the set of annotated genes yielded 95.4% and 96.2% completeness scores, respectively when compared with the BUSCO avian dataset. This new assembly for J. hyemalis provides a valuable resource for genome evolution analysis, and for identifying functional genes involved in adaptive processes and speciation.
Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Ecosistema , Genoma , Passeriformes/genética , Fenotipo , Pájaros Cantores/genéticaRESUMEN
The northern fowl mite (NFM), Ornithonyssus sylviarum, and the poultry red mite (PRM), Dermanyssus gallinae, are the most serious pests of poultry, both of which have an expanding global prevalence. Research on NFM has been constrained by a lack of genomic and transcriptomic data. Here, we report and analyze the first global transcriptome data across all mite live stages and sexes. A total of 28,999 unigenes were assembled, of which 19,750 (68.10%) were annotated using seven functional databases. The biological function of these unigenes was classified using the GO, KOG, and KEGG databases. To gain insight into the chemosensory receptor-based system of parasitiform mites, we furthermore assessed the gene repertoire of gustatory receptors (GRs) and ionotropic receptors (IRs), both of which encode putative ligand-gated ion channel proteins. While these receptors are well characterized in insect model species, our understanding of chemosensory detection in mites and ticks is in its infancy. To address this paucity of data, we identified 9 IR/iGluRs and 2 GRs genes by analyzing transcriptome data in the NFM, while 9 GRs and 41 IR/iGluRs genes were annotated in the PRM genome. Taken together, the transcriptomic and genomic annotation of these two species provide a valuable reference for studies of parasitiform mites and also help to understand how chemosensory gene family expansion/contraction events may have been reshaped by an obligate parasitic lifestyle compared with their free-living closest relatives. Future studies should include additional species to validate this observation and functional characterization of the identified proteins as a step forward in identifying tools for controlling these poultry pests.
Asunto(s)
Infestaciones por Ácaros , Ácaros , Enfermedades de las Aves de Corral , Animales , Pollos , Ácaros/genética , Aves de Corral , TranscriptomaRESUMEN
Here, we present the chromosome-level genome assembly of Dysdera silvatica Schmidt, 1981, a nocturnal ground-dwelling spider endemic from the Canary Islands. The genus Dysdera has undergone a remarkable diversification in this archipelago mostly associated with shifts in the level of trophic specialization, becoming an excellent model to study the genomic drivers of adaptive radiations. The new assembly (1.37 Gb; scaffold N50 of 174.2 Mb), was performed using the chromosome conformation capture scaffolding technique, represents a continuity improvement of more than 4500 times with respect to the previous version. The seven largest scaffolds or pseudochromosomes, which cover 87% of the total assembly size, probably correspond with the seven chromosomes of the karyotype of this species, including a characteristic large X chromosome. To illustrate the value of this new resource we performed a comprehensive analysis of the two major arthropod chemoreceptor gene families (i.e., gustatory and ionotropic receptors). We identified 545 chemoreceptor sequences distributed across all pseudochromosomes, with a notable underrepresentation in the X chromosome. At least 54% of them localize in 83 genomic clusters with a significantly lower evolutionary distances between them than the average of the family, suggesting a recent origin of many of them. This chromosome-level assembly is the first high-quality genome representative of the Synspermiata clade, and just the third among spiders, representing a new valuable resource to gain insights into the structure and organization of chelicerate genomes, including the role that structural variants, repetitive elements and large gene families played in the extraordinary biology of spiders.
Asunto(s)
Arácnidos , Arañas , Animales , Cromosomas , Genómica , Humanos , España , Arañas/genéticaRESUMEN
Spiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of â¼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (â¼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion.
Asunto(s)
Arañas , Animales , Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Arañas/genéticaRESUMEN
The common chaffinch, Fringilla coelebs, is one of the most common, widespread, and well-studied passerines in Europe, with a broad distribution encompassing Western Europe and parts of Asia, North Africa, and the Macaronesian archipelagos. We present a high-quality genome assembly of the common chaffinch generated using Illumina shotgun sequencing in combination with Chicago and Hi-C libraries. The final genome is a 994.87-Mb chromosome-level assembly, with 98% of the sequence data located in chromosome scaffolds and a N50 statistic of 69.73 Mb. Our genome assembly shows high completeness, with a complete BUSCO score of 93.9% using the avian data set. Around 7.8% of the genome contains interspersed repetitive elements. The structural annotation yielded 17,703 genes, 86.5% of which have a functional annotation, including 7,827 complete universal single-copy orthologs out of 8,338 genes represented in the BUSCO avian data set. This new annotated genome assembly will be a valuable resource as a reference for comparative and population genomic analyses of passerine, avian, and vertebrate evolution.
Asunto(s)
Genoma , Passeriformes/genética , Animales , Cromosomas , Evolución Molecular , Genómica , ARN de Transferencia/genética , ARN no Traducido/genética , Secuencias Repetitivas de Ácidos NucleicosRESUMEN
The gray mangrove [Avicennia marina (Forsk.) Vierh.] is the most widely distributed mangrove species, ranging throughout the Indo-West Pacific. It presents remarkable levels of geographic variation both in phenotypic traits and habitat, often occupying extreme environments at the edges of its distribution. However, subspecific evolutionary relationships and adaptive mechanisms remain understudied, especially across populations of the West Indian Ocean. High-quality genomic resources accounting for such variability are also sparse. Here we report the first chromosome-level assembly of the genome of A. marina. We used a previously release draft assembly and proximity ligation libraries Chicago and Dovetail HiC for scaffolding, producing a 456,526,188-bp long genome. The largest 32 scaffolds (22.4-10.5 Mb) accounted for 98% of the genome assembly, with the remaining 2% distributed among much shorter 3,759 scaffolds (62.4-1 kb). We annotated 45,032 protein-coding genes using tissue-specific RNA-seq data in combination with de novo gene prediction, from which 34,442 were associated to GO terms. Genome assembly and annotated set of genes yield a 96.7% and 95.1% completeness score, respectively, when compared with the eudicots BUSCO dataset. Furthermore, an FST survey based on resequencing data successfully identified a set of candidate genes potentially involved in local adaptation and revealed patterns of adaptive variability correlating with a temperature gradient in Arabian mangrove populations. Our A. marina genomic assembly provides a highly valuable resource for genome evolution analysis, as well as for identifying functional genes involved in adaptive processes and speciation.
Asunto(s)
Avicennia , Genoma de Planta , Avicennia/genética , Ambientes Extremos , Genómica , Anotación de Secuencia Molecular , FenotipoRESUMEN
Identifying protein-coding genes from genome and transcriptome data is the first and one of the most important steps towards their comprehensive study. This chapter introduces both general procedures for sequence mining, and specific approaches for recognizing characteristic motives and chemical properties in soluble proteins potentially involved in arthropod chemical communication. We describe (i) the workflow to identify members of the OBP (Odorant-Binding Proteins) and CSP (Chemosensory Proteins) families in genomic and transcriptomic sequences using our recently developed bioinformatic solution, BITACORA, and (ii) the main further steps to visualize and to accurately annotate these genes in the Apollo genome browser. The success of further biochemical, functional and evolutionary analyses largely depends on the quality of these initial steps.
Asunto(s)
Artrópodos , Animales , Artrópodos/genética , Perfilación de la Expresión Génica , Genoma , Humanos , Proteínas de Insectos/genética , Filogenia , Análisis de SecuenciaRESUMEN
Chemosensory perception is a fundamental biological process of particular relevance in basic and applied arthropod research. However, apart from insects, there is little knowledge of specific molecules involved in this system, which is restricted to a few taxa with uneven phylogenetic sampling across lineages. From an evolutionary perspective, onychophorans (velvet worms) and tardigrades (water bears) are of special interest since they represent the closest living relatives of arthropods, altogether comprising the Panarthropoda. To get insights into the evolutionary origin and diversification of the chemosensory gene repertoire in panarthropods, we sequenced the antenna- and head-specific transcriptomes of the velvet worm Euperipatoides rowelli and analyzed members of all major chemosensory families in representative genomes of onychophorans, tardigrades, and arthropods. Our results suggest that the NPC2 gene family was the only family encoding soluble proteins in the panarthropod ancestor and that onychophorans might have lost many arthropod-like chemoreceptors, including the highly conserved IR25a receptor of protostomes. On the other hand, the eutardigrade genomes lack genes encoding the DEG-ENaC and CD36-sensory neuron membrane proteins, the chemosensory members of which have been retained in arthropods; these losses might be related to lineage-specific adaptive strategies of tardigrades to survive extreme environmental conditions. Although the results of this study need to be further substantiated by an increased taxon sampling, our findings shed light on the diversification of chemosensory gene families in Panarthropoda and contribute to a better understanding of the evolution of animal chemical senses.
Asunto(s)
Proteínas de Artrópodos/genética , Células Quimiorreceptoras , Evolución Molecular , Invertebrados/genética , Familia de Multigenes , Animales , Femenino , MasculinoRESUMEN
Gene annotation is a critical bottleneck in genomic research, especially for the comprehensive study of very large gene families in the genomes of nonmodel organisms. Despite the recent progress in automatic methods, state-of-the-art tools used for this task often produce inaccurate annotations, such as fused, chimeric, partial or even completely absent gene models for many family copies, errors that require considerable extra efforts to be corrected. Here we present bitacora, a bioinformatics solution that integrates popular sequence similarity-based search tools and Perl scripts to facilitate both the curation of these inaccurate annotations and the identification of previously undetected gene family copies directly in genomic DNA sequences. We tested the performance of bitacora in annotating the members of two chemosensory gene families with different repertoire size in seven available genome sequences, and compared its performance with that of augustus-ppx, a tool also designed to improve automatic annotations using a sequence similarity-based approach. Despite the relatively high fragmentation of some of these drafts, bitacora was able to improve the annotation of many members of these families and detected thousands of new chemoreceptors encoded in genome sequences. The program creates general feature format (GFF) files, with both curated and newly identified gene models, and FASTA files with the predicted proteins. These outputs can be easily integrated in genomic annotation editors, greatly facilitating subsequent manual annotation and downstream evolutionary analyses.
Asunto(s)
Biología Computacional , Genoma , Anotación de Secuencia Molecular , Familia de Multigenes , Programas Informáticos , GenómicaRESUMEN
The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.
Asunto(s)
Adaptación Fisiológica/genética , Ephemeroptera/genética , Evolución Molecular , Alas de Animales , Animales , Ephemeroptera/clasificación , Ephemeroptera/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto/genética , Genoma de los Insectos/genética , Branquias , Insectos/clasificación , Insectos/genética , Estadios del Ciclo de Vida/genética , Masculino , FilogeniaRESUMEN
Traumatic brain injury (TBI) is a major health problem with high rates of mortality and morbidity worldwide. The response of the brain to TBI is orchestrated by a number of cytokines, including interleukin-6 (IL-6). IL-6 is a major cytokine in the central nervous system and it is produced by different cells, such as neurons, glial cells, and endothelial cells. Since glial cells are one of the most important sources and targets of IL-6, we have examined the role of microglia-derived IL-6 in normal conditions and following a model of TBI, cryolesion of the somatosensorial cortex. To this end, tamoxifen-inducible microglial IL-6-deficient (Il6ΔMic , using Cx3cr1 CreER model) mice and control (Il6lox/lox ) mice were used. In normal conditions, microglial IL-6 deficiency reduced deambulation and exploratory behavior and decreased anxiety in a sex-dependent manner. The transcriptome profile following cryolesion was dramatically altered 1 day post-lesion in Il6ΔMic compared with Il6lox/lox mice. However, the phenotype of Il6ΔMic mice was less compromised in the following days, suggesting that compensatory mechanisms are at play.
Asunto(s)
Conducta Animal/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Microglía/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Conducta Exploratoria/fisiología , Inflamación/genética , Interleucina-6/genética , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Neuronas/metabolismo , TranscriptomaRESUMEN
The coexistence of multiple eco-phenotypes in independently assembled communities makes island adaptive radiations the ideal framework to test convergence and parallelism in evolution. In the radiation of the spider genus Dysdera in the Canary Islands, species diversification occurs concomitant with repeated events of trophic specialization. These dietary shifts, to feed primarily on woodlice, are accompanied by modifications in morphology (mostly in the mouthparts), behaviour and nutritional physiology. To gain insight into the molecular basis of this adaptive radiation, we performed a comprehensive comparative transcriptome analysis of five Canary Island Dysdera endemics representing two evolutionary and geographically independent events of dietary specialization. After controlling for the potential confounding effects of hemiplasy, our differential gene expression and selective constraint analyses identified a number of genetic changes that could be associated with the repeated adaptations to specialized diet of woodlice, including some related to heavy metal detoxification and homeostasis, the metabolism of some important nutrients and venom toxins. Our results shed light on the genomic basis of an extraordinary case of dietary shift convergence associated with species diversification. We uncovered putative molecular substrates of convergent evolutionary changes at different hierarchical levels, including specific genes, genes with equivalent functions and even particular amino acid positions. This study improves our knowledge of rapid adaptive radiations and provides new insights into the predictability of evolution.
Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Dieta , Genoma , Arañas/genética , Sustitución de Aminoácidos/genética , Animales , Regulación de la Expresión Génica , Ontología de Genes , Geografía , Fenotipo , Filogenia , Selección Genética , España , Especificidad de la EspecieRESUMEN
Chemoreception is a widespread biological function that is essential for the survival, reproduction, and social communication of animals. Though the molecular mechanisms underlying chemoreception are relatively well known in insects, they are poorly studied in the other major arthropod lineages. Current availability of a number of chelicerate genomes constitutes a great opportunity to better characterize gene families involved in this important function in a lineage that emerged and colonized land independently of insects. At the same time, that offers new opportunities and challenges for the study of this interesting animal branch in many translational research areas. Here, we have performed a comprehensive comparative genomics study that explicitly considers the high fragmentation of available draft genomes and that for the first time included complete genome data that cover most of the chelicerate diversity. Our exhaustive searches exposed thousands of previously uncharacterized chemosensory sequences, most of them encoding members of the gustatory and ionotropic receptor families. The phylogenetic and gene turnover analyses of these sequences indicated that the whole-genome duplication events proposed for this subphylum would not explain the differences in the number of chemoreceptors observed across species. A constant and prolonged gene birth and death process, altered by episodic bursts of gene duplication yielding lineage-specific expansions, has contributed significantly to the extant chemosensory diversity in this group of animals. This study also provides valuable insights into the origin and functional diversification of other relevant chemosensory gene families different from receptors, such as odorant-binding proteins and other related molecules.
Asunto(s)
Proteínas de Artrópodos/genética , Artrópodos/genética , Evolución Molecular , Duplicación de Gen , Genómica , Animales , Artrópodos/clasificación , Genoma/genética , Familia de Multigenes , FilogeniaRESUMEN
Unlike hexapods and vertebrates, in chelicerates, knowledge of the specific molecules involved in chemoreception comes exclusively from the comparative analysis of genome sequences. Indeed, the genomes of mites, ticks and spiders contain several genes encoding homologs of some insect membrane receptors and small soluble chemosensory proteins. Here, we conducted for the first time a comprehensive comparative RNA-Seq analysis across different body structures of a chelicerate: the nocturnal wandering hunter spider Dysdera silvatica Schmidt 1981. Specifically, we obtained the complete transcriptome of this species as well as the specific expression profile in the first pair of legs and the palps, which are thought to be the specific olfactory appendages in spiders, and in the remaining legs, which also have hairs that have been morphologically identified as chemosensory. We identified several ionotropic (Ir) and gustatory (Gr) receptor family members exclusively or differentially expressed across transcriptomes, some exhibiting a distinctive pattern in the putative olfactory appendages. Furthermore, these IRs were the only known olfactory receptors identified in such structures. These results, integrated with an extensive phylogenetic analysis across arthropods, uncover a specialization of the chemosensory gene repertoire across the body of D. silvatica and suggest that some IRs likely mediate olfactory signaling in chelicerates. Noticeably, we detected the expression of a gene family distantly related to insect odorant-binding proteins (OBPs), suggesting that this gene family is more ancient than previously believed, as well as the expression of an uncharacterized gene family encoding small globular secreted proteins, which appears to be a good chemosensory gene family candidate.