Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38534647

RESUMEN

N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, NAHs represent potential solutions for developing improved treatment alternatives. Therefore, this research introduces six novel derivatives of (EZ)-N'-benzylidene-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide, synthesized using a microwave-assisted method. In more detail, we joined two pharmacophore fragments in a single molecule, represented by an NSAID-type carprofen structure and a hydrazone-type structure, obtaining a new series of NSAID-N-acyl hydrazone derivatives that were further characterized spectrally using FT-IR, NMR, and HRMS investigations. Additionally, the substances were assessed for their tuberculostatic activity by examining their impact on four strains of M. tuberculosis, including two susceptible to rifampicin (RIF) and isoniazid (INH), one susceptible to RIF and resistant to INH, and one resistant to both RIF and INH. The results of our research highlight the potential of the prepared compounds in fighting against antibiotic-resistant M. tuberculosis strains.

2.
Eur J Med Chem ; 269: 116268, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460268

RESUMEN

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections. The versatility of M. tuberculosis allows it to evade traditional anti-TB agents through various acquired and intrinsic mechanisms, rendering TB among the leading causes of infectious disease-related mortality. In this context, researchers worldwide focused on establishing novel approaches to address drug resistance in M. tuberculosis, developing diverse alternative treatments with varying effectiveness and in different testing phases. Overviewing the current progress, this paper aims to briefly present the mechanisms involved in M. tuberculosis drug-resistance, further reviewing in more detail the under-development antibiotics, nanotechnological approaches, and natural therapeutic solutions that promise to overcome current treatment limitations.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Mycobacterium tuberculosis , Tuberculosis , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Antiinfecciosos/uso terapéutico
3.
Front Cell Infect Microbiol ; 13: 1181516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680749

RESUMEN

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance. Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles. Results and discussion: The crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents.


Asunto(s)
Antiinflamatorios no Esteroideos , Cloro , Bromo , Antioxidantes/farmacología , Reposicionamiento de Medicamentos , Antiinflamatorios , Carbazoles/farmacología , Antibacterianos/farmacología , Biopelículas
4.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108183

RESUMEN

The unprecedented increase in microbial resistance rates to all current drugs raises an acute need for the design of more effective antimicrobial strategies. Moreover, the importance of oxidative stress due to chronic inflammation in infections with resistant bacteria represents a key factor for the development of new antibacterial agents with potential antioxidant effects. Thus, the purpose of this study was to bioevaluate new O-aryl-carbamoyl-oxymino-fluorene derivatives for their potential use against infectious diseases. With this aim, their antimicrobial effect was evaluated using quantitative assays (minimum inhibitory/bactericidal/biofilms inhibitory concentrations) (MIC/MBC/MBIC), the obtained values being 0.156-10/0.312-10/0.009-1.25 mg/mL), while some of the involved mechanisms (i.e., membrane depolarization) were investigated by flow cytometry. The antioxidant activity was evaluated by studying the scavenger capacity of DPPH and ABTS•+ radicals and the toxicity was tested in vitro on three cell lines and in vivo on the crustacean Artemia franciscana Kellog. The four compounds derived from 9H-fluoren-9-one oxime proved to exhibit promising antimicrobial features and particularly, a significant antibiofilm activity. The presence of chlorine induced an electron-withdrawing effect, favoring the anti-Staphylococcus aureus and that of the methyl group exhibited a +I effect of enhancing the anti-Candida albicans activity. The IC50 values calculated in the two toxicity assays revealed similar values and the potential of these compounds to inhibit the proliferation of tumoral cells. Taken together, all these data demonstrate the potential of the tested compounds to be further used for the development of novel antimicrobial and anticancer agents.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Candida albicans , Biopelículas , Pruebas de Sensibilidad Microbiana
5.
Molecules ; 26(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070126

RESUMEN

Antimicrobial resistance is one of the major public health threats at the global level, urging the search for new antimicrobial molecules. The fluorene nucleus is a component of different bioactive compounds, exhibiting diverse pharmacological actions. The present work describes the synthesis, chemical structure elucidation, and bioactivity of new O-aryl-carbamoyl-oxymino-fluorene derivatives and the contribution of iron oxide nanoparticles to enhance the desired biological activity. The antimicrobial activity assessed against three bacterial and fungal strains, in suspension and biofilm growth state, using a quantitative assay, revealed that the nature of substituents on the aryl moiety are determinant for both the spectrum and intensity of the inhibitory effect. The electron-withdrawing inductive effect of chlorine atoms enhanced the activity against planktonic and adhered Staphylococcus aureus, while the +I effect of the methyl group enhanced the anti-fungal activity against Candida albicans strain. The magnetite nanoparticles have substantially improved the antimicrobial activity of the new compounds against planktonic microorganisms. The obtained compounds, as well as the magnetic core@shell nanostructures loaded with these compounds have a promising potential for the development of novel antimicrobial strategies.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Fluorenos/farmacología , Nanopartículas Magnéticas de Óxido de Hierro/química , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Espectroscopía de Resonancia Magnética con Carbono-13 , Fluorenos/química , Hongos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Magnetometría , Pruebas de Sensibilidad Microbiana , Plancton/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
6.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198306

RESUMEN

Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, ß-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of ß-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop ß-lactamase inhibitors (BLIs) capable of restoring the activity of ß-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of ß-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , beta-Lactamasas/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Animales , Bacteriófagos , Sistemas CRISPR-Cas , Carbapenémicos/farmacología , Enterobacter/efectos de los fármacos , Enterobacter/enzimología , Enterococcus/efectos de los fármacos , Enterococcus/enzimología , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Vacunación , Inhibidores de beta-Lactamasas/farmacología
7.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218209

RESUMEN

The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Tiourea/análogos & derivados , Antibacterianos/síntesis química , Antibacterianos/química , Bacterias/efectos de los fármacos , Sitios de Unión , Biopelículas/efectos de los fármacos , Hongos/efectos de los fármacos , Ligandos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Simulación del Acoplamiento Molecular , Electricidad Estática , Tiourea/síntesis química , Tiourea/química , Tiourea/farmacología
8.
Molecules ; 25(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941125

RESUMEN

In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a-j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a-j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Simulación por Computador , Oximas , Antiinfecciosos/química , Antiinfecciosos/farmacología , Biopelículas/crecimiento & desarrollo , Línea Celular , Humanos , Oximas/química , Oximas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...