Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Allergol Int ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692992

RESUMEN

Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.

4.
Int Forum Allergy Rhinol ; 14(5): 986-989, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38146638

RESUMEN

KEY POINTS: Individual sinus opacification (ISO) is measurable via a convolutional neural network approach. ISO decreased through 2 years after highly effective modulator therapy was initiated. In adults with cystic fibrosis, ISO did not correlate with quality of life or olfaction.


Asunto(s)
Fibrosis Quística , Rinosinusitis , Olfato , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Crónica , Fibrosis Quística/tratamiento farmacológico , Trastornos del Olfato/etiología , Senos Paranasales , Calidad de Vida , Olfato/fisiología
7.
J Cell Sci ; 136(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37505110

RESUMEN

Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.


Asunto(s)
Células Epiteliales , Vía de Señalización Wnt , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Ratones Noqueados , Proteína Wnt4/metabolismo
8.
Dev Biol ; 501: 111-123, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353105

RESUMEN

Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced, and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Femenino , Embarazo , Animales , Humanos , Ratones , Vapeo/efectos adversos , Nicotina/efectos adversos , Nicotina/metabolismo , Pulmón/metabolismo , Cigarrillo Electrónico a Vapor/efectos adversos
9.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L771-L782, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039381

RESUMEN

Multiciliated cell loss is a hallmark of airway epithelial remodeling in chronic inflammatory airway diseases including cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease. It disrupts mucociliary clearance, which fuels disease progression. Effective clearance requires an optimal proportion of multiciliated and secretory cells. This is controlled by Notch signaling such that between two adjacent cells the one that activates Notch becomes a secretory cell and the one that avoids Notch activation becomes a multiciliated cell. Consequently, blocking Notch by a small molecule inhibitor of the γ-secretase enzyme that cleaves the Notch receptor for signal activation directs differentiation toward the multiciliated lineage. Thus, γ-secretase inhibitor (GSI) treatment may alleviate multiciliated cell loss in lung disease. Here, we demonstrate the therapeutic restoration of multiciliated cells by the GSI LY450139 (semagacestat). LY450139 increased multiciliated cell numbers in a dose-dependent manner in healthy primary human nasal epithelial cells (HNECs) during differentiation and in mature cultures, but not when applied during early epithelialization of progenitors. LY450139 did not impact stem cell proliferation. Basal and apical administration were equally effective. In healthy adult mice, LY450139 increased multiciliated cell numbers without detectible toxicity. LY450139 also increased multiciliated cells and decreased excess mucus secretory cells in CF HNECs and IL-13 remodeled healthy HNECs. LY450139 normalized multiciliated cell numbers in CF HNECs without interfering with the activity of CFTR modulator compounds. In summary, we demonstrate that GSI administration is a promising therapeutic to restore multiciliated cells and potentially improve epithelial function in a wide range of chronic lung diseases.NEW & NOTEWORTHY Our findings show that low-dose, short-term topical or systemic γ-secretase inhibitor treatment may lead to restoration of multiciliated cells without toxicity and potentially improve epithelial function in a wide range of chronic lung diseases.


Asunto(s)
Asma , Fibrosis Quística , Humanos , Ratones , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal/fisiología , Receptores Notch
10.
Viruses ; 15(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992456

RESUMEN

Rhinoviruses (RVs) are major instigators of acute exacerbations of asthma, COPD, and other respiratory diseases. RVs are categorized into three species (RV-A, RV-B, and RV-C), which comprise more than 160 serotypes, making it difficult to develop an effective vaccine. Currently, no effective treatment for RV infection is available. Pulmonary surfactant is an extracellular complex of lipids and proteins that plays a central role in regulating innate immunity in the lung. The minor pulmonary surfactant lipids, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI), are potent regulators of inflammatory processes and exert antiviral activity against respiratory syncytial virus (RSV) and influenza A viruses (IAV). In the current study, we examined the potencies of POPG and PI against rhinovirus A16 (RV-A16) in primary human airway epithelial cells (AECs) differentiated at an air-liquid interface (ALI). After AECs were infected with RV-A16, PI reduced the viral RNA copy number by 70% and downregulated (55-75%) the expression of antiviral (MDA5, IRF7, and IFN-lambda) and CXCL11 chemokine genes. In contrast, POPG only slightly decreased MDA5 (24%) and IRF7 (11%) gene expression but did not inhibit IFN-lambda gene expression or RV-A16 replication in AECs. However, both POPG and PI inhibited (50-80%) IL6 gene expression and protein secretion and CXCL11 protein secretion. PI treatment dramatically attenuated global gene expression changes induced by RV-A16 infection alone in AECs. The observed inhibitory effects were indirect and resulted mainly from the inhibition of virus replication. Cell-type enrichment analysis of viral-regulated genes opposed by PI treatment revealed the PI-inhibited viral induction of goblet cell metaplasia and the virus-induced downregulation of ciliated, club, and ionocyte cell types. Notably, the PI treatment also altered the ability of RV-A16 to regulate the expression of some phosphatidylinositol 4-kinase (PI4K); acyl-CoA-binding, domain-containing (ACBD); and low-density lipoprotein receptor (LDLR) genes that play critical roles in the formation and functioning of replication organelles (ROs) required for RV replication in host cells. These data suggest PI can be used as a potent, non-toxic, antiviral agent for RV infection prophylaxis and treatment.


Asunto(s)
Infecciones por Enterovirus , Infecciones por Picornaviridae , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/farmacología , Rhinovirus/genética , Células Epiteliales , Epitelio/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Enterovirus/tratamiento farmacológico , Pulmón/metabolismo , Lípidos
11.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36326834

RESUMEN

Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Humanos , Animales , Ratones , Pulmón/patología , Lesión Pulmonar Aguda/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Fosfofructoquinasa-2/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
12.
Front Cell Dev Biol ; 10: 976182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176272

RESUMEN

Planar cell polarity (PCP) signaling polarizes cells within the plane of an epithelium. In the airways, planar cell polarity signaling orients the directional beating of motile cilia required for effective mucociliary clearance. The planar cell polarity signaling mechanism is best understood from work in Drosophila, where it has been shown to both coordinate the axis of polarity between cells and to direct the morphological manifestations of polarization within cells. The 'core' planar cell polarity signaling mechanism comprises two protein complexes that segregate to opposite sides of each cell and interact with the opposite complex in neighboring cells. Proper subcellular localization of core planar cell polarity proteins correlates with, and is almost certainly responsible for, their ability to direct polarization. This mechanism is highly conserved from Drosophila to vertebrates, though for most of the core genes, mammals have multiple paralogs whereas Drosophila has only one. In the mouse airway epithelium, the core protein Prickle2 segregates asymmetrically, as is characteristic for core proteins, but is only present in multiciliated cells and is absent from other cell types. Furthermore, Prickle2 mutant mice show only modest ciliary polarity defects. These observations suggest that other Prickle paralogs might contribute to polarization. Here, we show that Prickle1 segregates asymmetrically in multiciliated and nonciliated airway epithelial cell types, that compared to Prickle2, Prickle1 has different spatial and temporal expression dynamics and a stronger ciliary polarity phenotype, and that Prickle1 and Prickle2 mutants genetically interact. We propose distinct and partially overlapping functions for the Prickle paralogs in polarization of the airway epithelium.

13.
Proc Natl Acad Sci U S A ; 119(32): e2203760119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35867811

RESUMEN

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.


Asunto(s)
Antivirales , COVID-19 , Interferones , SARS-CoV-2 , Anticuerpos Neutralizantes , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Humanos , Interferones/farmacología , Interferones/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
14.
Cell ; 185(11): 1860-1874.e12, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35568033

RESUMEN

Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.


Asunto(s)
Bacteriófagos , Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Fibrosis Quística/tratamiento farmacológico , Humanos , Pulmón , Masculino , Infecciones por Mycobacterium no Tuberculosas/terapia , Mycobacterium abscessus/fisiología
16.
Am J Respir Cell Mol Biol ; 67(2): 188-200, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608953

RESUMEN

We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Bleomicina/toxicidad , Cilios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Transducción de Señal
19.
Sci Rep ; 12(1): 5207, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338216

RESUMEN

The cell surface serine protease Transmembrane Protease 2 (TMPRSS2) is required to cleave the spike protein of SARS-CoV-2 for viral entry into cells. We determined whether negatively-charged heparin enhanced TMPRSS2 inhibition by alpha-1-antitrypsin (AAT). TMPRSS2 activity was determined in HEK293T cells overexpressing TMPRSS2. We quantified infection of primary human airway epithelial cells (hAEc) with human coronavirus 229E (HCoV-229E) by immunostaining for the nucleocapsid protein and by the plaque assay. Detailed molecular modeling was undertaken with the heparin-TMPRSS2-AAT ternary complex. Enoxaparin enhanced AAT inhibition of both TMPRSS2 activity and infection of hAEc with HCoV-229E. Underlying these findings, detailed molecular modeling revealed that: (i) the reactive center loop of AAT adopts an inhibitory-competent conformation compared with the crystal structure of TMPRSS2 bound to an exogenous (nafamostat) or endogenous (HAI-2) TMPRSS2 inhibitor and (ii) negatively-charged heparin bridges adjacent electropositive patches at the TMPRSS2-AAT interface, neutralizing otherwise repulsive forces. In conclusion, enoxaparin enhances AAT inhibition of both TMPRSS2 and coronavirus infection. Such host-directed therapy is less likely to be affected by SARS-CoV-2 mutations. Furthermore, given the known anti-inflammatory activities of both AAT and heparin, this form of treatment may target both the virus and the excessive inflammatory consequences of severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enoxaparina , Enoxaparina/farmacología , Células HEK293 , Humanos , SARS-CoV-2 , Serina Endopeptidasas
20.
PLoS One ; 17(3): e0261504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286330

RESUMEN

BACKGROUND: Obesity in asthmatics has been associated with higher airway oxidative stress in which dysfunctional mitochondria are a potential contributing source of excess free radicals. Paraoxonase 2 (PON2) plays an important role in reducing mitochondrial-derived oxidative stress and could, therefore, have therapeutic potential in these patients. OBJECTIVES: We used primary human bronchial epithelial cells (HBECs) from asthmatics and healthy controls to evaluate: a) protein levels of Paraoxonase 2 and b) to test the potential protective effect of quercetin supplementation in cells under oxidative stress conditions. RESULTS: Compared to lean controls, obese asthmatics had significantly lower PON2 airway epithelial levels (respectively, 1.08 vs. 0.47 relative units normalized by GAPDH) (p-value < 0.006). Treating HBECs in vitro for 24 hrs. with 25µM quercetin significantly increased PON2 protein levels: 15.5 treated cells vs. 9.8 untreated cells (relative units normalized by GAPDH) (p value = 0.004). Notably, compared to untreated cells, quercetin supplementation reduces mitochondrial superoxide and hydrogen peroxide production on HBECs cells exposed to different oxidative stress triggers such as 1-2 Naphthoquinone (1-2 NQ) and hydrogen peroxide, suggesting that PON2 might play a protective role ameliorating oxidative injury on human airway epithelium. CONCLUSION: Compared to lean controls, obese asthmatics have significantly reduced PON2 levels in airway epithelial cells. Treatment with quercetin in vitro increased PON2 protein levels and prevented oxidative stress from different types of stimuli. Hence, quercetin supplementation may be a potential therapeutic strategy to prevent obesity-mediated airway oxidative stress in obese asthmatics.


Asunto(s)
Arildialquilfosfatasa , Asma , Obesidad , Arildialquilfosfatasa/metabolismo , Asma/metabolismo , Humanos , Peróxido de Hidrógeno , Obesidad/complicaciones , Estrés Oxidativo , Quercetina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA