RESUMEN
Whole genome sequencing and multiplex PCR analysis were used to characterize previously isolated baculovirus isolates from Mamestra populations in Eurasia. Although these viruses have been previously described as Mamestra brassicae nucleopolyhedrovirus (MbNPV/MabrNPV), we demonstrate here that these isolates represent strains of the baculovirus species Alphabaculovirus maconfiguratae (MacoNPV-A) and Alphabaculovirus altermaconfiguratae (MacoNPV-B). The MabrNPV-Bu and -Uk isolates had 96% nucleotide (nt) identity to the type isolate MacoNPV-A 90/2 at the whole genome level and in addition contained a lef-7 homologue which is found in MacoNPV-A but not MacoNPV-B. MabrNPV-Si, -De and -Nl had 96.6, 96.6 and 98.5% nt identity to the type isolate MacoNPV-B 96/2 at the whole genome level, respectively and contained a helicase-2 homologue. Gene content, synteny and K-2-P lef-8, lef-9 and polh analysis also confirmed the presence of both MacoNPV-A and MacoNPV-B isolates in Eurasia. Thus, both these alphabaculovirus species have wide Holarctic distributions in Mamestra host species. MacoNPV-A and MacoNPV-B have wide host ranges and in addition we showed that MacoNPV-B isolates trended to higher infectivity for T. ni larvae.
Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Secuencia de Bases , Larva , Genoma Viral , Genómica , FilogeniaRESUMEN
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, new information was found leading to the withdrawal of the qualification 'absence of aminoglycoside production ability' for Bacillus velezensis. The qualification for Bacillus paralicheniformis was changed to 'absence of bacitracin production ability'. For the other TUs, no new information was found that would change the status of previously recommended QPS TUs. Of 52 microorganisms notified to EFSA between April and September 2022 (inclusive), 48 were not evaluated because: 7 were filamentous fungi, 3 were Enterococcus faecium, 2 were Escherichia coli, 1 was Streptomyces spp., and 35 were taxonomic units (TUs) that already have a QPS status. The other four TUs notified within this period, and one notified previously as a different species, which was recently reclassified, were evaluated for the first time for a possible QPS status: Xanthobacter spp. could not be assessed because it was not identified to the species level; Geobacillus thermodenitrificans is recommended for QPS status with the qualification 'absence of toxigenic activity'. Streptoccus oralis is not recommended for QPS status. Ogataea polymorpha is proposed for QPS status with the qualification 'for production purposes only'. Lactiplantibacillus argentoratensis (new species) is included in the QPS list.
RESUMEN
White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.
Asunto(s)
Penaeidae , Factores de Virulencia , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/genética , Virus del Síndrome de la Mancha Blanca 1/patogenicidad , Factores de Virulencia/genética , Internalización del VirusRESUMEN
EFSA was asked by the European Commission to evaluate synthetic biology (SynBio) developments for agri-food use in the near future and to determine whether or not they are expected to constitute potential new hazards/risks. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment of SynBio and if updated guidance is needed. The scope of this Opinion covers food and feed risk assessment, the variety of microorganisms that can be used in the food/feed chain and the whole spectrum of techniques used in SynBio. This Opinion complements a previously adopted Opinion with the evaluation of existing guidelines for the microbial characterisation and environmental risk assessment of microorganisms obtained through SynBio. The present Opinion confirms that microbial SynBio applications for food and feed use, with the exception of xenobionts, could be ready in the European Union in the next decade. New hazards were identified related to the use or production of unusual and/or new-to-nature components. Fifteen cases were selected for evaluating the adequacy of existing guidelines. These were generally adequate for assessing the product, the production process, nutritional and toxicological safety, allergenicity, exposure and post-market monitoring. The comparative approach and a safety assessment per se could be applied depending on the degree of familiarity of the SynBio organism/product with the non-genetically modified counterparts. Updated guidance is recommended for: (i) bacteriophages, protists/microalgae, (ii) exposure to plant protection products and biostimulants, (iii) xenobionts and (iv) feed additives for insects as target species. Development of risk assessment tools is recommended for assessing nutritional value of biomasses, influence of microorganisms on the gut microbiome and the gut function, allergenic potential of new-to-nature proteins, impact of horizontal gene transfer and potential risks of living cell intake. A further development towards a strain-driven risk assessment approach is recommended.
RESUMEN
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 50 microorganisms notified to EFSA in October 2021 to March 2022 (inclusive), 41 were not evaluated: 10 filamentous fungi, 1 Enterococcus faecium, 1 Clostridium butyricum, 3 Escherichia coli and 1 Streptomyces spp. because are excluded from QPS evaluation, and 25 TUs that have already a QPS status. Nine notifications, corresponding to seven TUs were evaluated: four of these, Streptococcus salivarius, Companilactobacillus formosensis, Pseudonocardia autotrophica and Papiliotrema terrestris, being evaluated for the first time. The other three, Microbacterium foliorum, Pseudomonas fluorescens and Ensifer adhaerens were re-assessed. None of these TUs were recommended for QPS status: Ensifer adhaerens, Microbacterium foliorum, Companilactobacillus formosensis and Papiliotrema terrestris due to a limited body of knowledge, Streptococcus salivarius due to its ability to cause bacteraemia and systemic infection that results in a variety of morbidities, Pseudonocardia autotrophica due to lack of body of knowledge and uncertainty on the safety of biologically active compounds which can be produced, and Pseudomonas fluorescens due to possible safety concerns.
RESUMEN
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of µ = 1×10-7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to µ = 5×10-7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed.
Asunto(s)
Nucleopoliedrovirus , Animales , Mutación , Tasa de Mutación , Nucleopoliedrovirus/genética , SpodopteraRESUMEN
The qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. The QPS list was updated in relation to the revised taxonomy of the genus Bacillus, to synonyms of yeast species and for the qualifications 'absence of resistance to antimycotics' and 'only for production purposes'. Lactobacillus cellobiosus has been reclassified as Limosilactobacillus fermentum. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TU)s. Of the 70 microorganisms notified to EFSA, 64 were not evaluated: 11 filamentous fungi, one oomycete, one Clostridium butyricum, one Enterococcus faecium, five Escherichia coli, one Streptomyces sp., one Bacillus nakamurai and 43 TUs that already had a QPS status. Six notifications, corresponding to six TUs were evaluated: Paenibacillus lentus was reassessed because an update was requested for the current mandate. Enterococcus lactis synonym Enterococcus xinjiangensis, Aurantiochytrium mangrovei synonym Schizochytrium mangrovei, Schizochytrium aggregatum, Chlamydomonas reinhardtii synonym Chlamydomonas smithii and Haematococcus lacustris synonym Haematococcus pluvialis were assessed for the first time. The following TUs were not recommended for QPS status: P. lentus due to a limited body of knowledge, E. lactis synonym E. xinjiangensis due to potential safety concerns, A. mangrovei synonym S. mangrovei, S. aggregatum and C. reinhardtii synonym C. smithii, due to lack of a body of knowledge on its occurrence in the food and feed chain. H. lacustris synonym H. pluvialis is recommended for QPS status with the qualification 'for production purposes only'.
RESUMEN
Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host's brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.
Asunto(s)
Virus de Insectos/fisiología , Virus ARN Monocatenarios Positivos/fisiología , Moscas Tse-Tse/virología , Tropismo Viral , Animales , Encéfalo/virología , Sistema Digestivo/virología , Cuerpo Adiposo/virología , Femenino , Genitales/virología , Genoma Viral , Virus de Insectos/clasificación , Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Masculino , Filogenia , Virus ARN Monocatenarios Positivos/clasificación , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/aislamiento & purificación , Glándulas Salivales/virología , Replicación ViralRESUMEN
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Schizochytrium limacinum, which is a synonym for Aurantiochytrium limacinum, was added to the QPS list. Of the 78 microorganisms notified to EFSA between October 2020 and March 2021, 71 were excluded; 16 filamentous fungi, 1 Dyella spp., 1 Enterococcus faecium, 7 Escherichia coli, 1 Streptomyces spp., 1 Schizochytrium spp. and 44 TUs that had been previously evaluated. Seven TUs were evaluated: Corynebacterium stationis and Kodamaea ohmeri were re-assessed because an update was requested for the current mandate. Anoxybacillus caldiproteolyticus, Bacillus paralicheniformis, Enterobacter hormaechei, Eremothecium ashbyi and Lactococcus garvieae were assessed for the first time. The following TUs were not recommended for QPS status: A. caldiproteolyticus due to the lack of a body of knowledge in relation to its use in the food or feed chain, E. hormaechei, L. garvieae and K. ohmeri due to their pathogenic potential, E. ashbyi and C. stationis due to a lack of body of knowledge on their occurrence in the food and feed chain and to their pathogenic potential. B. paralicheniformis was recommended for the QPS status with the qualification 'absence of toxigenic activity' and 'absence of genetic information to synthesize bacitracin'.
RESUMEN
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. It is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at strain or product level, and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 36 microorganisms notified to EFSA between April and September 2020, 33 were excluded; seven filamentous fungi (including Aureobasidium pullulans based on recent taxonomic insights), one Clostridium butyricum, one Enterococcus faecium, three Escherichia coli, one Streptomyces spp. and 20 TUs that had been previously evaluated. Three TUs were evaluated; Methylorubrum extorquens and Mycobacterium aurum for the first time and Bacillus circulans was re-assessed because an update was requested in relation to a new mandate. M. extorquens and M. aurum are not recommended for QPS status due to the lack of a body of knowledge in relation to use in the food or feed chain and M. aurum, due to uncertainty concerning its pathogenicity potential. B. circulans was recommended for QPS status with the qualifications for 'production purposes only' and 'absence of cytotoxic activity'.
RESUMEN
EFSA was asked by the European Commission to consider synthetic biology developments for agri-food use in the near future and to determine if the use of this technology is expected to constitute potential risks and hazards for the environment. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment and if updated guidance is needed. The scope of this Opinion covers viable synthetic biology microorganisms (SynBioMs) expected to be deliberately released into the environment. The evaluation was based on: (i) horizon scanning of published information, (ii) gap analysis of existing guidelines covering the scope of this mandate, and (iii) future outlooks. A horizon scan showed that SynBioM applications could be ready for deliberate release into the environment of the EU in the next decade. However, extensively engineered SynBioMs are only expected in the wider future. For the microbial characterisation and the environmental risk assessment, the existing EFSA Guidances are useful as a basis. The extent to which existing Guidances can be used depends on the familiarity of the SynBioM with non-modified organisms. Among the recommendations for updated Guidance, the range of uses of products to be assessed covering all agri-food uses and taking into account all types of microorganisms, their relevant exposure routes and receiving environments. It is suggested that new EFSA Guidances address all 'specific areas of risk' as per Directive 2001/18/EC. No novel environmental hazards are expected for current and near future SynBioMs. However, the efficacy by which the SynBioMs interact with the environment may differ. This could lead to increased exposure and risk. Novel hazards connected with the development of xenobionts may be expected in the wider future.
RESUMEN
Qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA was updated with 54 biological agents, received between April and September 2019; 23 already had QPS status, 14 were excluded from the QPS exercise (7 filamentous fungi, 6 Escherichia coli, Sphingomonas paucimobilis which was already evaluated). Seventeen, corresponding to 16 TUs, were evaluated for possible QPS status, fourteen of these for the first time, and Protaminobacter rubrum, evaluated previously, was excluded because it is not a valid species. Eight TUs are recommended for QPS status. Lactobacillus parafarraginis and Zygosaccharomyces rouxii are recommended to be included in the QPS list. Parageobacillus thermoglucosidasius and Paenibacillus illinoisensis can be recommended for the QPS list with the qualification 'for production purposes only' and absence of toxigenic potential. Bacillus velezensis can be recommended for the QPS list with the qualification 'absence of toxigenic potential and the absence of aminoglycoside production ability'. Cupriavidus necator, Aurantiochytrium limacinum and Tetraselmis chuii can be recommended for the QPS list with the qualification 'production purposes only'. Pantoea ananatis is not recommended for the QPS list due to lack of body of knowledge in relation to its pathogenicity potential for plants. Corynebacterium stationis, Hamamotoa singularis, Rhodococcus aetherivorans and Rhodococcus ruber cannot be recommended for the QPS list due to lack of body of knowledge. Kodamaea ohmeri cannot be recommended for the QPS list due to safety concerns.
RESUMEN
The qualified presumption of safety (QPS) was developed to provide a safety pre-assessment within EFSA for microorganisms. Strains belonging to QPS taxonomic units (TUs) still require an assessment based on a specific data package, but QPS status facilitates fast track evaluation. QPS TUs are unambiguously defined biological agents assessed for the body of knowledge, their safety and their end use. Safety concerns are, where possible, to be confirmed at strain or product level, and reflected as 'qualifications'. Qualifications need to be evaluated at strain level by the respective EFSA units. The lowest QPS TU is the species level for bacteria, yeasts and protists/algae, and the family for viruses. The QPS concept is also applicable to genetically modified microorganisms used for production purposes if the recipient strain qualifies for the QPS status, and if the genetic modification does not indicate a concern. Based on the actual body of knowledge and/or an ambiguous taxonomic position, the following TUs were excluded from the QPS assessment: filamentous fungi, oomycetes, streptomycetes, Enterococcus faecium, Escherichia coli and bacteriophages. The list of QPS-recommended biological agents was reviewed and updated in the current opinion and therefore now becomes the valid list. For this update, reports on the safety of previously assessed microorganisms, including bacteria, yeasts and viruses (the latter only when used for plant protection purposes) were reviewed, following an Extensive Literature Search strategy. All TUs previously recommended for 2016 QPS list had their status reconfirmed as well as their qualifications. The TUs related to the new notifications received since the 2016 QPS opinion was periodically evaluated for QPS status in the Statements of the BIOHAZ Panel, and the QPS list was also periodically updated. In total, 14 new TUs received a QPS status between 2017 and 2019: three yeasts, eight bacteria and three algae/protists.
RESUMEN
The qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. It is based on an assessment of the taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs of the 39 microorganisms notified to EFSA between October 2019 and March 2020, 33 were excluded, including five filamentous fungi, five Escherichia coli, two Enterococcus faecium, two Streptomyces spp. and 19 TUs already evaluated. Six TUs were evaluated. Akkermansia muciniphila was not recommended for QPS status due to safety concerns. Clostridium butyricum was not recommended because some strains contain pathogenicity factors. This TU was excluded for further QPS evaluation. Galdieria sulphuraria and Pseudomonas chlororaphis were also rejected due to a lack of body of knowledge. The QPS status of Corynebacterium ammoniagenes (with the qualification 'for production purposes only') and of Komagataella pastoris (with the qualification 'for enzyme production') was confirmed. In relation to the taxonomic revision of the Lactobacillus genus, previously designated Lactobacillus species will be reassigned to the new species and both the old and new names will be retained in the QPS list.
RESUMEN
Spodoptera litura is an emerging pest insect in cotton and arable crops in Central Asia. To explore the possibility of using baculoviruses as biological control agents instead of chemical pesticides, in a previous study we characterized a number of S. litura nucleopolyhedrovirus (SpltNPV) isolates from Pakistan. We found significant differences in speed of kill, an important property of a biological control agent. Here we set out to understand the genetic basis of these differences in speed of kill, by comparing the genome of the fast-killing SpltNPV-Pak-TAX1 isolate with that of the slow-killing SpltNPV-Pak-BNG isolate. These two isolates and the SpltNPV-G2 reference strain from China were deep sequenced with Illumina. As expected, the two Pakistani isolates were closely related with >99% sequence identity, whereas the Chinese isolate was more distantly related. We identified two loci that may be associated with the fast action of the SpltNPV-Pak-TAX1 isolate. First, an analysis of rates of synonymous and non-synonymous mutations identified neutral to positive selection on open reading frame (ORF) 122, encoding a viral fibroblast growth factor (vFGF) that is known to affect virulence in other baculoviruses. Second, the homologous repeat region hr17, a putative enhancer of transcription and origin of replication, is absent in SpltNPV-Pak-TAX1 suggesting it may also affect virulence. Additionally, we found there is little genetic variation within both Pakistani isolates, and we identified four genes under positive selection in both isolates that may have played a role in adaptation of SpltNPV to conditions in Central Asia. Our results contribute to the understanding of the enhanced activity of SpltNPV-Pak-TAX1, and may help to select better SpltNPV isolates for the control of S. litura in Pakistan and elsewhere.
Asunto(s)
Sitios Genéticos/genética , Nucleopoliedrovirus/genética , Spodoptera/virología , Virulencia , Animales , China , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleopoliedrovirus/patogenicidad , Sistemas de Lectura Abierta , Pakistán , Control Biológico de VectoresRESUMEN
Hytrosaviridae is a family of large, rod-shaped, enveloped entomopathogenic viruses with dsDNA genomes of 120-190 kbp. Hytrosaviruses (also known as salivary gland hypertrophy viruses) primarily replicate in the salivary glands of adult dipteran flies. Hytrosaviruses infecting the haematophagous tsetse fly and the filth-feeding housefly are assigned to two genera, Glossinavirus and Muscavirus, respectively. Whereas muscavirus infections are only overt, glossinavirus infections can be either covert or overt. Overt infections are characterized by diagnostic salivary gland hypertrophy and cause either partial or complete infertility. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hytrosaviridae, which is available at ictv.global/report/hytrosaviridae.
Asunto(s)
Dípteros/virología , Virus de Insectos/clasificación , Virus de Insectos/genética , Animales , Genoma Viral , Replicación ViralRESUMEN
Baculoviruses, although they infect insects in nature, can transduce a wide variety of mammalian cells and are therefore promising gene therapy vectors. However, baculovirus transduction into many mammalian cells is very inefficient, and the limiting stages and factors remain unknown. An important finding is that a short-duration trigger with low pH can significantly enhance virus transduction efficiency, but the mechanism is poorly understood. Herein, we performed a detailed comparative study on entry mechanisms of the prototypical baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) into insect and mammalian cells. The results showed that AcMNPV could be internalized into mammalian cells efficiently, but fusion in early endosomes (EEs) appeared to be the major obstacle. Measurement of endosomal pH suggested that virus fusion might be restricted under relatively high-pH conditions in mammalian cells. Interestingly, mutations of the major viral fusion protein GP64 that conferred decreased fusogenicity did not affect virus infection of insect cells, whereas virus transduction into mammalian cells was severely impaired, suggesting a more stringent dependence on GP64 fusogenicity for AcMNPV entry into mammalian cells than into insect cells. An increase in the fusogenicity of GP64 mutants resulting from low pH triggered the rescue of fusion-deficient recombinant virus transduction efficiency. Based on the above-described findings, the pH of EEs was specifically reduced with a Na+/K+-ATPase inhibitor, and the AcMNPV transduction of many mammalian cells indeed became highly efficient. This study not only revealed the roadblocks to mammalian cell entry of baculovirus but also provides a new strategy for improving baculovirus-based gene delivery and therapy.IMPORTANCE Baculoviruses can transduce a wide variety of mammalian cells but do so with low efficiency, which greatly limits their practical application as potential gene delivery vectors. So far, the understanding of baculovirus entry into mammalian cells is obscure, and the limiting stages and factors are unclear. In this study, by comparatively analyzing the mechanisms of baculovirus entry into mammalian and insect cells, virus fusion during the early stage of endocytosis was revealed as the major obstacle for efficient baculovirus transduction into mammalian cells. A higher fusogenicity of the major viral fusion protein GP64 was found to be required for virus entry into mammalian cells than for entry into insect cells. Interestingly, by decreasing the pH of early endosomes with a specific agent, virus transduction of a wide range of mammalian cells was greatly enhanced. This study uncovers the roadblocks to mammalian cell entry of baculoviruses and presents mechanisms to overcome the roadblocks.
Asunto(s)
Endosomas/virología , Nucleopoliedrovirus/crecimiento & desarrollo , Nucleopoliedrovirus/genética , Transducción Genética , Internalización del Virus , Animales , Línea Celular , Endosomas/química , Humanos , Concentración de Iones de Hidrógeno , Insectos , Mamíferos , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismoRESUMEN
Baculovirus entry into insect midgut cells is dependent on a multiprotein complex of per os infectivity factors (PIFs) on the envelopes of occlusion-derived virions (ODVs). The structure and assembly of the PIF complex are largely unknown. To reveal the complete members of the complex, a combination of blue native polyacrylamide gel electrophoresis, liquid chromatography-tandem mass spectrometry, and Western blotting was conducted on three different baculoviruses. The results showed that the PIF complex has a molecular mass of â¼500 kDa and consists of nine PIFs, including a newly discovered member (PIF9). To decipher the assembly process, each pif gene was knocked out from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) genome individually by use of synthetic baculovirus technology, and the impact on PIF complex formation was investigated. Deletion of pif8 resulted in the formation of an â¼400-kDa subcomplex. Deletion of pif0, -4, -6, -7, or -9 resulted in a subcomplex of â¼230 kDa, but deletion of pif1, -2, or -3 abolished formation of any complex. Taken together, our data identified a core complex of â¼230 kDa, consisting of PIF1, -2, and -3. This revised the previous knowledge that the core complex was about 170 kDa and contained PIF1 to -4. Analysis of the PIF complex in cellular fractions suggested that it is assembled in the cytoplasm before being transported to the nucleus and subsequently incorporated into the envelopes of ODVs. Only the full complex, not the subcomplex, is resistant to proteolytic attack, indicating the essentiality of correct complex assembly for oral infection.IMPORTANCE Entry of baculovirus into host insects is mediated by a per os infectivity factor (PIF) complex on the envelopes of occlusion-derived viruses (ODVs). Knowledge of the composition and structure of the PIF complex is fundamental to understanding its mode of action. By using multiple approaches, we determined the complete list of proteins (nine) in the PIF complex. In contrast to previous knowledge in the field, the core complex is revised to â¼230 kDa and consists of PIF1 to -3 but not PIF4. Interestingly, our results suggest that the PIF complex is formed in the cytoplasm prior to its transport to the nucleus and subsequent incorporation into ODVs. Only the full complex is resistant to proteolytic degradation in the insect midgut, implying the critical role of the entire complex. These findings provide the baseline for future studies on the ODV entry mechanism mediated by the multiprotein complex.
Asunto(s)
Baculoviridae/metabolismo , Baculoviridae/patogenicidad , Factores de Virulencia/metabolismo , Animales , Línea Celular , Infecciones por Virus ADN , Insectos/virología , Nucleopoliedrovirus/patogenicidad , Células Sf9 , Proteínas del Envoltorio Viral/metabolismo , Virión/patogenicidadRESUMEN
The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS taxonomic units and their qualifications. Between April and September 2018, the QPS notification list was updated with 48 microorganisms from applications for market authorisation. Of these, 30 biological agents already had QPS status, 15 were excluded from the QPS exercise by the previous QPS mandate (five filamentous fungi) or from further evaluations within the current mandate (two notifications of Enterococcus faecium, one of Streptomyces spp. and seven of Escherichia coli). One taxonomic unit was (re)evaluated: Pseudomonas fluorescens had been previously evaluated in 2016, and was now re-evaluated within this mandate. The revision of the literature supports the previously identified safety concerns (e.g. production of biocompounds with antimicrobial activity and virulence features), preventing the inclusion of P. fluorescens in the QPS list. Mycobacterium setense and Komagataeibacter sucrofermentans were evaluated for the first time. M. setense cannot be considered for the QPS assessment because there are significant safety concerns. K. sucrofermentans (Acetobacter xylinus subsp. sucrofermentans) can be proposed for the QPS list but only for production purposes. The QPS status of Corynebacterium glutamicum is confirmed with the qualification extended to other production purposes.
RESUMEN
The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA from applications for market authorisation was updated with 47 biological agents, received between October 2018 and March 2019. Of these, 19 already had QPS status, 20 were excluded from the QPS exercise by the previous QPS mandate (11 filamentous fungi) or from further evaluations within the current mandate (9 notifications of Escherichia coli). Sphingomonas elodea, Gluconobacter frateurii, Corynebacterium ammoniagenes, Corynebacterium casei, Burkholderia ubonensis, Phaeodactylum tricornutum, Microbacterium foliorum and Euglena gracilis were evaluated for the first time. Sphingomonas elodea cannot be assessed for a possible QPS recommendation because it is not a valid species. Corynebacterium ammoniagenes and Euglena gracilis can be recommended for the QPS list with the qualification 'for production purposes only'. The following TUs cannot be recommended for the QPS list: Burkholderia ubonensis, due to its potential and confirmed ability to generate biologically active compounds and limited of body of knowledge; Corynebacterium casei, Gluconobacter frateurii and Microbacterium foliorum, due to lack of body of knowledge; Phaeodactylum tricornutum, based on the lack of a safe history of use in the food chain and limited knowledge on its potential production of bioactive compounds with possible toxic effects.