RESUMEN
The main goal of this study was to characterize cancer/testis antigens (CTAs) as potential molecular markers of ovarian cancer. First, we gathered and analyzed a significantly large dataset of 21 selected CTAs that are encoded by 32 genes; the dataset consisted of the mutation data, expression data, and survival data of patients with ovarian cancer (n = 15,665). The 19 functionally significant missense mutations were identified in 9 CTA genes: ACRBP, CCT4, KDM5B, MAGEA1, MAGEA4, PIWIL1, PIWIL2, PRAME, and SPA17. The analysis of the mRNA expression levels of 21 CTAs in healthy and tumor ovarian tissue showed an up-regulation in the expression level of AKAP3, MAGEA4, PIWIL1, and PRAME in tumor samples and a down-regulation in the expression level of CTAG1A, CTAG1B, MAGEC1, and PIWIL2. The CCT4 up-regulation and PRAME mutations were correlated with a good prognosis for ovarian cancer, while higher levels of GAGE2A and CT45A1 mRNAs were correlated with a poor prognosis for ovarian cancer patients. Thus, GAGE2, CT45, CCT4, and PRAME cancer/testis antigens can be considered as potential prognostic markers for ovarian tumors, and GAGE2, CCT4, and PRAME were revealed to be correlated with the prognosis for ovarian cancer patients for the first time.
RESUMEN
BACKGROUND: Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS: Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS: Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS: Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Predisposición Genética a la Enfermedad , Replicación del ADN , Mutación de Línea Germinal , Células GerminativasRESUMEN
The chemoresistance of tumor cells is one of the most urgent challenges in modern oncology and in pancreatic cancer, in which this problem is the most prominent. Therefore, the identification of new chemosensitizing co-targets may be a path toward increasing chemotherapy efficacy. In this work, we performed high-performance in vitro knockout CRISPR/Cas9 screening to find potential regulators of the sensitivity of pancreatic cancer. For this purpose, MIA PaCa-2 cells transduced with two sgRNA libraries ("cell cycle/nuclear proteins genes" and "genome-wide") were screened by oxaliplatin and cisplatin. In total, 173 candidate genes were identified as potential regulators of pancreatic cancer cell sensitivity to oxaliplatin and/or cisplatin; among these, 25 genes have previously been reported, while 148 genes were identified for the first time as potential platinum drug sensitivity regulators. We found seven candidate genes involved in pancreatic cancer cell sensitivity to both cisplatin and oxaliplatin. Gene ontology enrichment analysis reveals the enrichment of single-stranded DNA binding, damaged DNA binding pathways, and four associated with NADH dehydrogenase activity. Further investigation and validation of the obtained results by in vitro, in vivo, and bioinformatics approaches, as well as literature analysis, will help to identify novel pancreatic cancer platinum sensitivity regulators.
Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Oxaliplatino/farmacología , Biomarcadores de Tumor , Sistemas CRISPR-Cas , Línea Celular Tumoral , Biología Computacional/métodos , Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Neoplasias Pancreáticas , Mutaciones Letales SintéticasRESUMEN
The main goal of this study is to consider SLC34A2 as a potential prognostic marker of oncological diseases using the mutational, expression, and survival data of cancer studies which are publicly available online. We collected data from four databases (cBioPortal, The Cancer Genome Atlas; cBioPortal, Genie; International Cancer Genome Consortium; ArrayExpress). In total, 111,283 samples were categorized according to 27 tumor locations. Ninety-nine functionally significant missense mutations and twelve functionally significant indel mutations in SLC34A2 were found. The most frequent mutations were SLC34A2-ROS1, p.T154A, p.P506S/R/L, p.G257A/E/R, p.S318W, p.A396T, p.P410L/S/H, p.S461C, p.A473T/V, and p.Y503H/C/F. The upregulation of SLC34A2 was found in samples of myeloid, bowel, ovarian, and uterine tumors; downregulation was found in tumor samples of breast, liver, lung, and skin cancer tumors. It was found that the life expectancy of breast and thymus cancer patients with an SLC34A2 mutation is lower, and it was revealed that SLC34A2 overexpression reduced the life span of patients with brain, ovarian, and pancreatic tumors. Thereby, for these types of oncological diseases, the mutational profile of SLC34A2 can be a potential prognostic marker for breast and thymus cancers, and the upregulation of SLC34A2 can be a potential prognostic marker for brain, ovarian, and pancreatic cancers.
Asunto(s)
Biomarcadores de Tumor/genética , Mutación , Neoplasias/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación INDEL , Masculino , Mutación Missense , Pronóstico , Análisis de SupervivenciaRESUMEN
BACKGROUND: Identification of genetic factors causing predisposition to renal cell carcinoma has helped improve screening, early detection, and patient survival. METHODS: We report the characterization of a proband with renal and thyroid cancers and a family history of renal and other cancers by whole-exome sequencing (WES), coupled with WES analysis of germline DNA from additional affected and unaffected family members. RESULTS: This work identified multiple predicted protein-damaging variants relevant to the pattern of inherited cancer risk. Among these, the proband and an affected brother each had a heterozygous Ala45Thr variant in SDHA, a component of the succinate dehydrogenase (SDH) complex. SDH defects are associated with mitochondrial disorders and risk for various cancers; immunochemical analysis indicated loss of SDHB protein expression in the patient's tumor, compatible with SDH deficiency. Integrated analysis of public databases and structural predictions indicated that the two affected individuals also had additional variants in genes including TGFB2, TRAP1, PARP1, and EGF, each potentially relevant to cancer risk alone or in conjunction with the SDHA variant. In addition, allelic imbalances of PARP1 and TGFB2 were detected in the tumor of the proband. CONCLUSION: Together, these data suggest the possibility of risk associated with interaction of two or more variants.