Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37501353

RESUMEN

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Epilepsia Generalizada , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Lactante , Anomalías Múltiples/etiología , Anomalías Múltiples/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico , Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/etiología , Anomalías Dentarias/genética , Facies , Proteínas Represoras/genética , Factores de Transcripción
2.
Commun Biol ; 5(1): 515, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637276

RESUMEN

In SCN2A-related disorders, there is an urgent demand to establish efficient methods for determining the gain- (GoF) or loss-of-function (LoF) character of variants, to identify suitable candidates for precision therapies. Here we classify clinical phenotypes of 179 individuals with 38 recurrent SCN2A variants as early-infantile or later-onset epilepsy, or intellectual disability/autism spectrum disorder (ID/ASD) and assess the functional impact of 13 variants using dynamic action potential clamp (DAPC) and voltage clamp. Results show that 36/38 variants are associated with only one phenotypic group (30 early-infantile, 5 later-onset, 1 ID/ASD). Unexpectedly, we revealed major differences in outcome severity between individuals with the same variant for 40% of early-infantile variants studied. DAPC was superior to voltage clamp in predicting the impact of mutations on neuronal excitability and confirmed GoF produces early-infantile phenotypes and LoF later-onset phenotypes. For one early-infantile variant, the co-expression of the α1 and ß2 subunits of the Nav1.2 channel was needed to unveil functional impact, confirming the prediction of 3D molecular modeling. Neither DAPC nor voltage clamp reliably predicted phenotypic severity of early-infantile variants. Genotype, phenotypic group and DAPC are accurate predictors of the biophysical impact of SCN2A variants, but other approaches are needed to predict severity.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Trastorno del Espectro Autista/genética , Epilepsia/genética , Humanos , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenotipo
3.
Eur J Paediatr Neurol ; 32: 128-135, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33971557

RESUMEN

Genetic testing and counselling are increasingly important in epilepsy care, aiming at finding a diagnosis, understanding aetiology and improving treatment and outcome. The psychological impact of genetic counselling from patients' or parents' perspectives is, however, unknown. We studied the counselee-reported outcome of genetic counselling before and after genetic testing for epilepsy by evaluating empowerment - a key outcome goal of counselling reflecting cognitive, decisional and behavioural control, emotional regulation and hope - and anxiety. We asked patients or their parents (for those <16 years or intellectually disabled) referred for genetic testing for epilepsy in two university hospitals between June 2014 and 2017 to complete the same two questionnaires at three timepoints: before and after pre-test counselling and after post-test counselling. Empowerment was measured with the Genetic Counselling Outcome Scale (GCOS-18); anxiety with the short State Trait Anxiety Inventory (STAI-6). A total of 63 participants (55 parents with the age of 29-66 years; 8 patients with the age of 21-42 years) were included in our study. Empowerment significantly increased during the genetic counselling trajectory with a medium effect size (p < 0.001, d = 0.57). A small but significant increase in empowerment was already seen after pre-test counselling (p = 0.038, d = 0.29). Anxiety did not change significantly during the counselling trajectory (p = 0.223, d = -0.24). Our study highlights that patients with epilepsy or their parents show a clinically relevant increase in empowerment after genetic counselling. Empowerment was already increased after pre-test counselling, suggesting the importance of counselling before initiating genetic testing for epilepsy. However, individual differences in changes in empowerment and anxiety were seen, suggesting that counselling could be further improved, based on individual needs.


Asunto(s)
Ansiedad/psicología , Epilepsia/psicología , Asesoramiento Genético/psicología , Participación del Paciente/psicología , Adulto , Anciano , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Padres/psicología , Participación del Paciente/métodos , Encuestas y Cuestionarios , Adulto Joven
4.
Genet Med ; 23(2): 363-373, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33144681

RESUMEN

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Epilepsia , Trastorno del Espectro Autista/genética , Encefalopatías/genética , Epilepsia/genética , Femenino , Genes Ligados a X/genética , Humanos , Masculino , Proteínas del Tejido Nervioso , Convulsiones/genética
6.
Epilepsia ; 60(3): 429-440, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30828795

RESUMEN

OBJECTIVE: To investigate the occurrence of psychosis and serious behavioral problems in females with protocadherin 19 gene (PCDH19) pathogenic variants. METHODS: We evaluated whether psychosis and serious behavioral problems had occurred in 60 females (age 2-75 years) with PCDH19 pathogenic variants belonging to 35 families. Patients were identified from epilepsy genetics databases in Australia, New Zealand, the United States, and Canada. Neurologic and psychiatric disorders were diagnosed using standard methods. RESULTS: Eight of 60 females (13%) from 7 families developed a psychotic disorder: schizophrenia (6), schizoaffective disorder (1), or an unspecified psychotic disorder (1). Median age at onset of psychotic symptoms was 21 years (range 11-28 years). In our cohort of 39 females aged 11 years or older, 8 (21%) developed a psychotic disorder. Seven had ongoing seizures at onset of psychosis, with 2 continuing to have seizures when psychosis recurred. Psychotic disorders occurred in the setting of mild (4), moderate (2), or severe (1) intellectual disability, or normal intellect (1). Preexisting behavioral problems occurred in 4 patients, and autism spectrum disorder in 3. Two additional females (3%) had psychotic features with other conditions: an adolescent had recurrent episodes of postictal psychosis, and a 75-year-old woman had major depression with psychotic features. A further 3 adolescents (5%) with moderate to severe intellectual disability had onset of severe behavioral disturbance, or significant worsening. SIGNIFICANCE: We identify that psychotic disorders, including schizophrenia, are a later-onset manifestation of PCDH19 Girls Clustering Epilepsy. Affected girls and women should be carefully monitored for later-onset psychiatric disorders.


Asunto(s)
Cadherinas/genética , Epilepsia/genética , Esquizofrenia/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Epilepsia/complicaciones , Femenino , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Persona de Mediana Edad , Linaje , Protocadherinas , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/genética , Esquizofrenia/complicaciones , Adulto Joven
7.
Neurology ; 92(2): e96-e107, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30541864

RESUMEN

OBJECTIVE: To delineate the epileptology, a key part of the SYNGAP1 phenotypic spectrum, in a large patient cohort. METHODS: Patients were recruited via investigators' practices or social media. We included patients with (likely) pathogenic SYNGAP1 variants or chromosome 6p21.32 microdeletions incorporating SYNGAP1. We analyzed patients' phenotypes using a standardized epilepsy questionnaire, medical records, EEG, MRI, and seizure videos. RESULTS: We included 57 patients (53% male, median age 8 years) with SYNGAP1 mutations (n = 53) or microdeletions (n = 4). Of the 57 patients, 56 had epilepsy: generalized in 55, with focal seizures in 7 and infantile spasms in 1. Median seizure onset age was 2 years. A novel type of drop attack was identified comprising eyelid myoclonia evolving to a myoclonic-atonic (n = 5) or atonic (n = 8) seizure. Seizure types included eyelid myoclonia with absences (65%), myoclonic seizures (34%), atypical (20%) and typical (18%) absences, and atonic seizures (14%), triggered by eating in 25%. Developmental delay preceded seizure onset in 54 of 56 (96%) patients for whom early developmental history was available. Developmental plateauing or regression occurred with seizures in 56 in the context of a developmental and epileptic encephalopathy (DEE). Fifty-five of 57 patients had intellectual disability, which was moderate to severe in 50. Other common features included behavioral problems (73%); high pain threshold (72%); eating problems, including oral aversion (68%); hypotonia (67%); sleeping problems (62%); autism spectrum disorder (54%); and ataxia or gait abnormalities (51%). CONCLUSIONS: SYNGAP1 mutations cause a generalized DEE with a distinctive syndrome combining epilepsy with eyelid myoclonia with absences and myoclonic-atonic seizures, as well as a predilection to seizures triggered by eating.


Asunto(s)
Discapacidades del Desarrollo/genética , Mutación/genética , Espasmos Infantiles/genética , Proteínas Activadoras de ras GTPasa/genética , Adolescente , Adulto , Anticonvulsivantes/uso terapéutico , Encéfalo/diagnóstico por imagen , Encefalopatías/complicaciones , Encefalopatías/diagnóstico por imagen , Encefalopatías/genética , Niño , Preescolar , Estudios de Cohortes , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/diagnóstico por imagen , Electroencefalografía , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Espasmos Infantiles/complicaciones , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/tratamiento farmacológico , Adulto Joven
8.
Eur J Med Genet ; 62(4): 265-269, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30125676

RESUMEN

We studied the presence of benign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD), and PKD with infantile convulsions (PKD/IC) in patients with a 16p11.2 deletion including PRRT2 or with a PRRT2 loss-of-function sequence variant. Index patients were recruited from seven Dutch university hospitals. The presence of BIE, PKD and PKD/IC was retrospectively evaluated using questionnaires and medical records. We included 33 patients with a 16p11.2 deletion: three (9%) had BIE, none had PKD or PKD/IC. Twelve patients had a PRRT2 sequence variant: BIE was present in four (p = 0.069), PKD in six (p < 0.001) and PKD/IC in two (p = 0.067). Most patients with a deletion had undergone genetic testing because of developmental problems (87%), whereas all patients with a sequence variant were tested because of a movement disorder (55%) or epilepsy (45%). BIE, PKD and PKD/IC clearly showed incomplete penetrance in patients with 16p11.2 deletions, but were found in all and 95% of patients with a PRRT2 sequence variant in our study and a large literature cohort, respectively. Deletions and sequence variants have the same underlying loss-of-function disease mechanism. Thus, differences in ascertainment have led to overestimating the frequency of BIE, PKD and PKD/IC in patients with a PRRT2 sequence variant. This has important implications for counseling if genome-wide sequencing shows such variants in patients not presenting the PRRT2-related phenotypes.


Asunto(s)
Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Adolescente , Adulto , Trastorno Autístico/patología , Niño , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 16/genética , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino
9.
Hum Mutat ; 40(4): 374-379, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30556619

RESUMEN

Rapid advances in genomic technologies have facilitated the identification pathogenic variants causing human disease. We report siblings with developmental and epileptic encephalopathy due to a novel, shared heterozygous pathogenic 13 bp duplication in SYNGAP1 (c.435_447dup, p.(L150Vfs*6)) that was identified by whole genome sequencing (WGS). The pathogenic variant had escaped earlier detection via two methodologies: whole exome sequencing and high-depth targeted sequencing. Both technologies had produced reads carrying the variant, however, they were either not aligned due to the size of the insertion or aligned to multiple major histocompatibility complex (MHC) regions in the hg19 reference genome, making the critical reads unavailable for variant calling. The WGS pipeline followed different protocols, including alignment of reads to the GRCh37 reference genome, which lacks the additional MHC contigs. Our findings highlight the benefit of using orthogonal clinical bioinformatic pipelines and all relevant inheritance patterns to re-analyze genomic data in undiagnosed patients.


Asunto(s)
Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Mutación , Estudios de Asociación Genética/métodos , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo
10.
Brain ; 142(1): 80-92, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544257

RESUMEN

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Asunto(s)
Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Corteza Cerebelosa/metabolismo , Niño , Preescolar , Epilepsia/fisiopatología , Femenino , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Adulto Joven
11.
Epilepsia Open ; 2(2): 244-254, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29588953

RESUMEN

Objective: To evaluate the diagnostic yield of microarray analysis in a hospital-based cohort of children with seizures and to identify novel candidate genes and susceptibility loci for epilepsy. Methods: Of all children who presented with their first seizure in the University Medical Center Groningen (January 2000 through May 2013) (n = 1,368), we included 226 (17%) children who underwent microarray analysis before June 2014. All 226 children had a definite diagnosis of epilepsy. All their copy number variants (CNVs) on chromosomes 1-22 and X that contain protein-coding genes and have a prevalence of <1% in healthy controls were evaluated for their pathogenicity. Results: Children selected for microarray analysis more often had developmental problems (82% vs. 25%, p < 0.001), facial dysmorphisms (49% vs. 8%, p < 0.001), or behavioral problems (41% vs. 13%, p < 0.001) than children who were not selected. We found known clinically relevant CNVs for epilepsy in 24 of the 226 children (11%). Seventeen of these 24 children had been diagnosed with symptomatic focal epilepsy not otherwise specified (71%) and five with West syndrome (21%). Of these 24 children, many had developmental problems (100%), behavioral problems (54%) or facial dysmorphisms (46%). We further identified five novel CNVs comprising four potential candidate genes for epilepsy: MYT1L, UNC5D, SCN4B, and NRXN3. Significance: The 11% yield in our hospital-based cohort underscores the importance of microarray analysis in diagnostic evaluation of children with epilepsy.

12.
Eur J Paediatr Neurol ; 20(3): 489-92, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26818399

RESUMEN

We describe an 18-year-old male patient with myoclonic astatic epilepsy (MAE), moderate to severe intellectual disability, behavioural problems, several dysmorphisms and a 1.2-Mb de novo deletion on chromosome 16p11.2. This deletion results in haploinsufficiency of STX1B and other genes. Recently, variants in the STX1B gene have been associated with a wide spectrum of fever-related epilepsies ranging from single febrile seizures to severe epileptic encephalopathies. Two previously reported patients with a STX1B missense variant or deletion were diagnosed with MAE. Our observation of a STX1B deletion in a third patient with MAE therefore supports that STX1B gene variants or deletions can be involved in the aetiology of MAE. Furthermore, STX1B encodes for syntaxin-1B, of which interaction with the protein encoded by the STXBP1 gene is essential for the regulation of the synaptic transmission of neurotransmitters. STXBP1 gene variants have been identified in patients with many different types of epilepsy, including Dravet syndrome and epileptic encephalopathies, suggesting STX1B plays a similar role. We recommend that analysis of STX1B should be considered in the diagnostic work-up of individuals with MAE.


Asunto(s)
Epilepsias Mioclónicas/genética , Haploinsuficiencia/genética , Sintaxina 1/genética , Adolescente , Epilepsias Mioclónicas/diagnóstico , Humanos , Masculino , Eliminación de Secuencia/genética
13.
Eur J Paediatr Neurol ; 18(6): 663-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24908194

RESUMEN

OBJECTIVES: To evaluate treatment of children with Prolonged Convulsive Seizures (PCS) at the University Medical Centre Groningen (UMCG). MATERIAL AND METHODS: PCS were identified from an UMCG database of children with epilepsy aged <18 years who had their first (a)febrile seizure between 2000 and 2010. PCS were included if they lasted ≥10 min and occurred between January 2000 and October 2012 in children aged >1 month. Order, timing, and location of treatment were analysed. Treatment of PCS before and after 2005 was compared with recommendations from a Dutch 2005 treatment guideline for Convulsive Status Epilepticus (CSE) in children aged >1 month. RESULTS: 269 PCS occurring in 102 children were included (53.9% male, median age 2.8 years; range 0.1-13.7 years). Seventy episodes concerned a first PCS. Most first and subsequent PCS started outside the hospital (78.6% and 82.4%, respectively) and lasted 10-30 min (42.4% and 51.4%, respectively). Cessation occurred after two administrations of any therapy in first (median, range 0-7) and subsequent PCS (median, range 0-10). First treatment choice was rectal diazepam in first (59.6%) and subsequent (43.9%) PCS, but since 2006 a trend towards buccal midazolam was observed in subsequent PCS. Clonazepam was frequently used as second treatment choice in first (43.8%) and subsequent (27.3%) PCS, although not mentioned in the guideline. CONCLUSION: In our study cohort rectal diazepam is still first choice in the management of PCS despite proven superior efficacy of buccal midazolam. Clonazepam is frequently used although it is not formally recommended in a Dutch guideline.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Convulsiones/tratamiento farmacológico , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Estudios Observacionales como Asunto , Estadísticas no Paramétricas , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA