Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 264: 119665, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202157

RESUMEN

Executive functions are higher-order mental processes that support goal-directed behavior. Among these processes, Inhibition, Updating, and Shifting have been considered core executive domains. In this meta-analysis, we comprehensively investigate the neural networks of these executive domains and we synthesize for the first time the neural convergences and divergences among the most frequently used executive paradigms within those domains. A systematic search yielded 1055 published neuroimaging studies (including 26,191 participants in total). Our study revealed that a fronto-parietal network was shared by the three main domains. Furthermore, we executed conjunction analyses among the paradigms of the same domain to extract the core distinctive components of the main executive domains. This approach showed that Inhibition and Shifting are characterized by a strongly lateralized neural activation in the right and left hemisphere, respectively. In addition, both networks overlapped with the Updating network but not with each other. Remarkably, our study detected heterogeneity among the paradigms from the same domain. More specifically, analysis of Inhibition tasks revealed differing activations for Response Inhibition compared to Interference Control paradigms, suggesting that Inhibition encompasses relatively heterogeneous sub-functions. Shifting analyses revealed a bilateral overlap of the Wisconsin Card Sorting Task with the Updating network, but this pattern was absent for Rule Switching and Dual Task paradigms. Moreover, our Updating meta-analyses revealed the neural signatures associated with the specific modules of the Working Memory model from Baddeley and Hitch. To our knowledge, this is the most comprehensive meta-analysis of executive functions to date. Its paradigm-driven analyses provide a unique contribution to a better understanding of the neural convergences and divergences among executive processes that are relevant for clinical applications, such as cognitive enhancement and neurorehabilitation interventions.


Asunto(s)
Función Ejecutiva , Inhibición Psicológica , Humanos , Funciones de Verosimilitud , Función Ejecutiva/fisiología , Memoria a Corto Plazo/fisiología
2.
J Neurophysiol ; 123(4): 1460-1471, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32049588

RESUMEN

Developing approaches to improve motor skill learning is of considerable interest across multiple disciplines. Previous research has typically shown that repeating the same action on consecutive trials enhances short-term performance but has detrimental effects on longer term skill acquisition. However, most prior research has contrasted the effects of repetition only at the block level; in the current study we examined the effects of repeating individual trials embedded in a larger randomized block, a feature that is often overlooked when random trial orders are generated in learning tasks. With 4 days of practice, a "Minimal Repeats" group, who rarely experienced repeating stimuli on consecutive trials during training, improved to a greater extent than a "Frequent Repeats" group, who were frequently presented with repeating stimuli on consecutive trials during training. Our results extend the previous finding of the beneficial effects of random compared with blocked practice on performance, showing that reduced trial-to-trial repetition during training is favorable with regard to skill learning. This research highlights that limiting the number of repeats on consecutive trials is a simple behavioral manipulation that can enhance the process of skill learning. Data/analysis code and Supplemental Material are available at https://osf.io/p3278/.NEW & NOTEWORTHY Numerous studies have shown that performing different subtasks across consecutive blocks of trials enhances learning. We examined whether the same effect would occur on a trial-to-trial level. Our Minimal Repeats group, who primarily responded to different stimuli on consecutive trials, learned more than our Frequent Repeats group, who frequently responded to the same stimulus on consecutive trials. This shows that minimizing trial-to-trial repetition is a simple and easily applicable manipulation that can enhance learning.


Asunto(s)
Actividad Motora/fisiología , Destreza Motora/fisiología , Reconocimiento Visual de Modelos/fisiología , Práctica Psicológica , Adolescente , Adulto , Humanos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...