Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744825

RESUMEN

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Asunto(s)
Acetil-CoA Carboxilasa , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Supervivencia Celular , Ácidos Grasos , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Animales , Humanos , Ratones , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , NADP/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Biosíntesis de Proteínas
2.
Cell Death Discov ; 8(1): 157, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379801

RESUMEN

Neuroblastoma (NB) accounts for 15% of cancer-related deaths in childhood despite considerable therapeutic improvements. While several risk factors, including MYCN amplification and alterations in RAS and p53 pathway genes, have been defined in NB, the clinical outcome is very variable and difficult to predict. Since genes of the mechanistic target of rapamycin (mTOR) pathway are upregulated in MYCN-amplified NB, we aimed to define the predictive value of the mTOR substrate-encoding gene eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) expression in NB patients. Using publicly available data sets, we found that EIF4EBP1 mRNA expression is positively correlated with MYCN expression and elevated in stage 4 and high-risk NB patients. In addition, high EIF4EBP1 mRNA expression is associated with reduced overall and event-free survival in the entire group of NB patients in three cohorts, as well as in stage 4 and high-risk patients. This was confirmed by monitoring the clinical value of 4EBP1 protein expression, which revealed that high levels of 4EBP1 are significantly associated with prognostically unfavorable NB histology. Finally, functional analyses revealed that EIF4EBP1 expression is transcriptionally controlled by MYCN binding to the EIF4EBP1 promoter in NB cells. Our data highlight that EIF4EBP1 is a direct transcriptional target of MYCN whose high expression is associated with poor prognosis in NB patients. Therefore, EIF4EBP1 may serve to better stratify patients with NB.

4.
PLoS One ; 14(1): e0210217, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30677064

RESUMEN

Polycomb group (PcG) proteins are essential regulators of epigenetic gene silencing and development. The PcG protein enhancer of zeste homolog 2 (Ezh2) is a key component of the Polycomb Repressive Complex 2 and is responsible for placing the histone H3 lysine 27 trimethylation (H3K27me3) repressive mark on the genome through its methyltransferase domain. Ezh2 is highly conserved in vertebrates. We studied the role of ezh2 during development of zebrafish with the use of a mutant allele (ezh2(sa1199), R18STOP), which has a stop mutation in the second exon of the ezh2 gene. Two versions of the same line were used during this study. The first and original version of zygotic ezh2(sa1199) mutants unexpectedly retained ezh2 expression in brain, gut, branchial arches, and eyes at 3 days post-fertilization (dpf), as revealed by in-situ hybridization. Moreover, the expression pattern in homozygous mutants was identical to that of wild types, indicating that mutant ezh2 mRNA is not subject to nonsense mediated decay (NMD) as predicted. Both wild type and ezh2 mutant embryos presented edemas at 2 and 3 dpf. The line was renewed by selective breeding to counter select the non-specific phenotypes and survival was assessed. In contrast to earlier studies on ezh2 mutant zebrafish, ezh2(sa1199) mutants survived until adulthood. Interestingly, the ezh2 mRNA and Ezh2 protein were present during adulthood (70 dpf) in both wild type and ezh2(sa1199) mutant zebrafish. We conclude that the ezh2(sa1199) allele does not exhibit an ezh2 loss-of-function phenotype.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética/fisiología , Proteínas de Peces/genética , Pez Cebra/crecimiento & desarrollo , Animales , Codón sin Sentido , Metilación de ADN/fisiología , Embrión no Mamífero , Exones/genética , Histonas/metabolismo , Homocigoto , Fenotipo , ARN Mensajero/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...