Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188729

RESUMEN

Coronaviruses (CoVs) encode multiple interferon (IFN) antagonists that modulate the host response to virus replication. Here, we evaluated the host transcriptional response to infection with murine coronaviruses encoding independent mutations in one of two different viral antagonists, the deubiquitinase (DUB) within nonstructural protein 3 or the endoribonuclease (EndoU) within nonstructural protein 15. We used transcriptomics approaches to compare the scope and kinetics of the host response to the wild-type (WT), DUBmut, and EndoUmut viruses in infected macrophages. We found that the EndoUmut virus activates a focused response that predominantly involves type I interferons and interferon-related genes, whereas the WT and DUBmut viruses more broadly stimulate upregulation of over 2,800 genes, including networks associated with activating the unfolded protein response (UPR) and the proinflammatory response associated with viral pathogenesis. This study highlights the role of viral interferon antagonists in shaping the kinetics and magnitude of the host response during virus infection and demonstrates that inactivating a dominant viral antagonist, the coronavirus endoribonuclease, dramatically alters the host response in macrophages.IMPORTANCE Macrophages are an important cell type during coronavirus infections because they "notice" the infection and respond by inducing type I interferons, which limits virus replication. In turn, coronaviruses encode proteins that mitigate the cell's ability to signal an interferon response. Here, we evaluated the host macrophage response to two independent mutant coronaviruses, one with reduced deubiquitinating activity (DUBmut) and the other containing an inactivated endoribonuclease (EndoUmut). We observed a rapid, robust, and focused response to the EndoUmut virus, which was characterized by enhanced expression of interferon and interferon-related genes. In contrast, wild-type virus and the DUBmut virus elicited a more limited interferon response and ultimately activated over 2,800 genes, including players in the unfolded protein response and proinflammatory pathways associated with progression of significant disease. This study reveals that EndoU activity substantially contributes to the ability of coronaviruses to evade the host innate response and to replicate in macrophages.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Endorribonucleasas/metabolismo , Interferones/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Biología Computacional , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Citocinas/metabolismo , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Ratones , Modelos Biológicos , Mutación , ARN Viral , Respuesta de Proteína Desplegada
2.
Virology ; 525: 1-9, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30205273

RESUMEN

Investigating type I feline coronaviruses (FCoVs) in tissue culture is critical for understanding the basic virology, pathogenesis, and virus-host interactome of these important veterinary pathogens. This has been a perennial challenge as type I FCoV strains do not easily adapt to cell culture. Here we characterize replication kinetics and plaque formation of a model type I strain FIPV Black in Fcwf-4 cells established at Cornell University (Fcwf-4 CU). We determined that maximum virus titers (>107 pfu/mL) were recoverable from infected Fcwf-4 CU cell-free supernatant at 20 h post-infection. Type I FIPV Black and both biotypes of type II FCoV formed uniform and enumerable plaques on Fcwf-4 CU cells. Therefore, these cells were employable in a standardized plaque assay. Finally, we determined that the Fcwf-4 CU cells were morphologically distinct from feline bone marrow-derived macrophages and were less sensitive to exogenous type I interferon than were Fcwf-4 cells purchased from ATCC.


Asunto(s)
Coronavirus Felino/fisiología , Ensayo de Placa Viral/veterinaria , Cultivo de Virus/métodos , Replicación Viral/fisiología , Animales , Gatos , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...