Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 34(7): 1191-1206, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37022133

RESUMEN

SIGNIFICANCE STATEMENT: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies. BACKGROUND: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood. METHODS: To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7. RESULTS: Depletion of Rab7 in mice, Drosophila , and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro , Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins. CONCLUSIONS: Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.


Asunto(s)
Glomérulos Renales , Podocitos , Animales , Ratones , Humanos , Glomérulos Renales/patología , Podocitos/metabolismo , Endosomas , Drosophila , Riñón , Mamíferos
2.
Biomolecules ; 13(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979408

RESUMEN

In late 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of coronavirus disease 2019 (COVID-19) emerged in China and spread rapidly around the world, causing an ongoing pandemic of global concern. COVID-19 proceeds with moderate symptoms in most patients, whereas others experience serious respiratory illness that requires intensive care treatment and may end in death. The severity of COVID-19 is linked to several risk factors including male sex, comorbidities, and advanced age. Apart from respiratory complications, further impairments by COVID-19 affecting other tissues of the human body are observed. In this respect, the human kidney is one of the most frequently affected extrapulmonary organs and acute kidney injury (AKI) is known as a direct or indirect complication of SARS-CoV-2 infection. The aim of this work was to investigate the importance of the protein angiotensin-converting enzyme 2 (ACE2) for a possible cell entry of SARS-CoV-2 into human kidney cells. First, the expression of the cellular receptor ACE2 was demonstrated to be decisive for viral SARS-CoV-2 cell entry in human AB8 podocytes, whereas the presence of the transmembrane protease serine 2 (TMPRSS2) was dispensable. Moreover, the ACE2 protein amount was well detectable by mass spectrometry analysis in human kidneys, while TMPRSS2 could be detected only in a few samples. Additionally, a negative correlation of the ACE2 protein abundance to male sex and elderly aged females in human kidney tissues was demonstrated in this work. Last, the possibility of a direct infection of kidney tubular renal structures by SARS-CoV-2 was demonstrated.


Asunto(s)
COVID-19 , Anciano , Femenino , Humanos , Masculino , Enzima Convertidora de Angiotensina 2 , Riñón/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo
3.
J Am Soc Nephrol ; 34(6): 1039-1055, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930055

RESUMEN

SIGNIFICANCE STATEMENT: Nuclear exclusion of the cotranscription factor YAP, which is a consequence of activation of the Hippo signaling pathway, leads to FSGS and podocyte apoptosis. Ajuba proteins play an important role in the glomerular filtration barrier by keeping the Hippo pathway inactive. In nephrocytes from Drosophila melanogaster , a well-established model system for podocyte research, Ajuba proteins ensure slit diaphragm (SD) formation and function. Hippo pathway activation leads to mislocalization of Ajuba proteins, decreased SD formation, rearrangement of the actin cytoskeleton, and increased SD permeability. Targeting the kinases of the Hippo pathway with specific inhibitors in the glomerulus could, therefore, be a promising strategy for therapy of FSGS. BACKGROUND: The highly conserved Hippo pathway, which regulates organ growth and cell proliferation by inhibiting transcriptional cofactors YAP/TAZ, plays a special role in podocytes, where activation of the pathway leads to apoptosis. The Ajuba family proteins (Ajuba, LIM domain-containing protein 1 (LIMD1) and Wilms tumor protein 1-interacting protein [WTIP]) can bind and inactivate large tumor suppressor kinases 1 and 2, (LATS1/2) two of the Hippo pathway key kinases. WTIP, furthermore, connects the slit diaphragm (SD), the specialized cell-cell junction between podocytes, with the actin cytoskeleton. METHODS: We used garland cell nephrocytes of Drosophila melanogaster to monitor the role of Ajuba proteins in Hippo pathway regulation and structural integrity of the SD. Microscopy and functional assays analyzed the interplay between Ajuba proteins and LATS2 regarding expression, localization, interaction, and effects on the functionality of the SD. RESULTS: In nephrocytes, the Ajuba homolog Djub recruited Warts (LATS2 homolog) to the SD. Knockdown of Djub activated the Hippo pathway. Reciprocally, Hippo activation reduced the Djub level. Both Djub knockdown and Hippo activation led to morphological changes in the SD, rearrangement of the cortical actin cytoskeleton, and increased SD permeability. Knockdown of Warts or overexpression of constitutively active Yki prevented these effects. In podocytes, Hippo pathway activation or knockdown of YAP also decreased the level of Ajuba proteins. CONCLUSIONS: Ajuba proteins regulate the structure and function of the SD in nephrocytes, connecting the SD protein complex to the actin cytoskeleton and maintaining the Hippo pathway in an inactive state. Hippo pathway activation directly influencing Djub expression suggests a self-amplifying feedback mechanism.


Asunto(s)
Proteínas de Drosophila , Glomeruloesclerosis Focal y Segmentaria , Verrugas , Animales , Vía de Señalización Hippo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Señalizadoras YAP , Uniones Intercelulares , Proteínas de Drosophila/metabolismo
4.
FASEB J ; 34(4): 5453-5464, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086849

RESUMEN

The foot processes of podocytes exhibit a dynamic actin cytoskeleton, which maintains their complex cell structure and antagonizes the elastic forces of the glomerular capillary. Interdigitating secondary foot processes form a highly selective filter for proteins in the kidney, the slit membrane. Knockdown of slit membrane components such as Nephrin or Neph1 and cytoskeletal adaptor proteins such as CD2AP in mice leads to breakdown of the filtration barrier with foot process effacement, proteinuria, and early death of the mice. Less is known about the crosstalk between the slit membrane-associated proteins and cytoskeletal components inside the podocyte foot processes. Our study shows that LASP-1, an actin-binding protein, is highly expressed in podocytes. Electron microscopy studies demonstrate that LASP-1 is found at the slit membrane suggesting a role in anchoring slit membrane components to the actin cytoskeleton. Live cell imaging experiments with transfected podocytes reveal that LASP-1 is either part of a highly dynamic granular complex or a static, actin cytoskeleton-bound protein. We identify CD2AP as a novel LASP-1 binding partner that regulates its association with the actin cytoskeleton. Activation of the renin-angiotensin-aldosterone system, which is crucial for podocyte function, leads to phosphorylation and altered localization of LASP-1. In vivo studies using the Drosophila nephrocyte model indicate that Lasp is necessary for the slit membrane integrity and functional filtration.


Asunto(s)
Citoesqueleto de Actina/fisiología , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Riñón/fisiología , Proteínas de Microfilamentos/metabolismo , Podocitos/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Microfilamentos/genética , Fosforilación
5.
Cell Death Dis ; 9(9): 850, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154411

RESUMEN

Podocytes are crucial for the establishment of the blood-urine filtration barrier in the glomeruli of the kidney. These cells are mainly affected during glomerulopathies causing proteinuria and kidney function impairment. Ongoing podocyte injury leads to podocyte loss, finally followed by end-stage kidney disease. Podocytes display a predominant nuclear localization of YAP (Yes-associated protein), one effector protein of the Hippo pathway, which regulates the balance between proliferation, differentiation, and apoptosis in cells. Nuclear active YAP seems to be critical for podocyte survival in vivo and in vitro. We can show here that different treatments leading to sequestration of YAP into the cytoplasm in podocytes, like decreased rigidity of the substrate, incubation with dasatinib, or overexpression of Hippo pathway members result in the induction of apoptosis. A RNA sequencing analysis of large tumor suppressor kinase 2 (LATS2) overexpressing podocytes confirmed a significant upregulation of apoptotic genes. The downregulation of Hippo pathway components suggests a feedback mechanism in podocytes. Noteworthy was the regulation of genes involved in cell-cell junction, the composition of the extracellular space, and cell migration. This suggests an influence of Hippo pathway activity on podocyte integrity. As focal segmental glomerulopathy (FSGS) goes along with an activation of the Hippo pathway in podocytes, a comparison of our data with two independent studies of transcriptional regulation in human FSGS glomeruli obtained from the Nephroseq database was performed. This comparison affirmed a multitude of consistent transcriptional changes concerning the regulation of genes influencing apoptosis and the Hippo signaling pathway as well as cell junction formation and cell migration. The link between Hippo pathway activation in podocytes and the regulation of junction and migration processes in vivo might be a fundamental mechanism of glomerular sclerosis and loss of renal function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Fosfoproteínas/metabolismo , Podocitos/metabolismo , Transporte de Proteínas/fisiología , Apoptosis/fisiología , Línea Celular , Movimiento Celular/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Riñón/metabolismo , Insuficiencia Renal/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción , Transcripción Genética/fisiología , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/fisiología , Proteínas Señalizadoras YAP
6.
Am J Physiol Renal Physiol ; 315(5): F1307-F1319, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30066585

RESUMEN

Intracellular trafficking processes play a key role for the establishment and maintenance of membrane surfaces in renal epithelia. Therefore, dysfunctions of these trafficking processes could be key events and important determinants in the onset and progression of diseases. The presence of cellular vacuoles-observed in many histologic analyses of renal diseases-is a macroscopic hint for disturbed intracellular trafficking processes. However, how vacuoles develop and which intracellular pathways are directly affected remain largely unknown. Previous studies showed that in some cases, vacuolization is linked to malfunction of the Vac14 complex. This complex, including the scaffold protein Vac14, the lipid kinase PIKfyve, and its counteracting lipid phosphatase Fig4, regulates intracellular phosphatidylinositol phosphate levels, which in turn, control the maturation of early-into-late endosomes, as well as the processing of autophagosomes into autophagolysosomes. Here, we analyzed the role of Vac14 in mice and observed that the nephron-specific knockin of the PIKfyve-binding-deficient Vac14L156R mutant led to albuminuria, accompanied by mesangial expansion, increased glomerular size, and an elevated expression of several kidney injury markers. Overexpression of this Vac14 variant in podocytes did not reveal a strong in vivo phenotype, indicating that Vac14-dependent trafficking processes are more important for tubular than for glomerular processes in the kidney. In vitro overexpression of Vac14L156R in Madin-Darby canine kidney cells had no impact on apico-basal polarity defects but resulted in a faster reassembly of junctional structures after Ca2+ depletion and delayed endo- and transcytosis rates. Taken together, our data suggest that increased albuminuria of Vac14L156R-overexpressing mice is a consequence of a lowered endo- and transcytosis of albumin in renal tubules.


Asunto(s)
Albuminuria/metabolismo , Proliferación Celular , Endocitosis , Mesangio Glomerular/metabolismo , Túbulos Renales/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Albuminuria/genética , Albuminuria/patología , Albuminuria/fisiopatología , Animales , Perros , Femenino , Técnicas de Sustitución del Gen , Predisposición Genética a la Enfermedad , Mesangio Glomerular/fisiopatología , Mesangio Glomerular/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intracelular , Túbulos Renales/fisiopatología , Túbulos Renales/ultraestructura , Células de Riñón Canino Madin Darby , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fenotipo , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Transcitosis
7.
FASEB J ; 31(11): 5019-5035, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28768720

RESUMEN

Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.


Asunto(s)
Angiotensina II/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Línea Celular Transformada , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
8.
J Am Soc Nephrol ; 28(7): 2093-2107, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28154200

RESUMEN

The nephron is the basic physiologic subunit of the mammalian kidney and is made up of several apicobasally polarized epithelial cell types. The process of apicobasal polarization in animal cells is controlled by the evolutionarily conserved Crumbs (CRB), Partitioning-defective, and Scribble protein complexes. Here, we investigated the role of protein associated with LIN-7 1 (Pals1, also known as Mpp5), a core component of the apical membrane-determining CRB complex in the nephron. Pals1 interacting proteins, including Crb3 and Wwtr1/Taz, have been linked to renal cyst formation in mice before. Immunohistologic analysis revealed Pals1 expression in renal tubular cells and podocytes of human kidneys. Mice lacking one Pals1 allele (functionally haploid for Pals1) in nephrons developed a fully penetrant phenotype, characterized by cyst formation and severe defects in renal barrier function, which led to death within 6-8 weeks. In Drosophila nephrocytes, deficiency of the Pals1 ortholog caused alterations in slit-diaphragm-like structures. Additional studies in epithelial cell culture models revealed that Pals1 functions as a dose-dependent upstream regulator of the crosstalk between Hippo- and TGF-ß-mediated signaling. Furthermore, Pals1 haploinsufficiency in mouse kidneys associated with the upregulation of Hippo pathway target genes and marker genes of TGF-ß signaling, including biomarkers of renal diseases. These findings support a link between apical polarity proteins and renal diseases, especially renal cyst diseases. Further investigation of the Pals1-linked networks is required to decipher the mechanisms underlying the pathogenesis of these diseases.


Asunto(s)
Haploinsuficiencia , Enfermedades Renales Quísticas/genética , Proteínas de la Membrana/genética , Nucleósido-Fosfato Quinasa/genética , Proteinuria/genética , Animales , Drosophila , Femenino , Masculino , Ratones
9.
Biochim Biophys Acta Mol Cell Res ; 1864(5): 749-759, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28216340

RESUMEN

Phosphoinositides (PI) and converting enzymes are crucial determinants of organelle identity and morphology. One important endolysosomal specific PI is PI(3,5)P2, generated by the PIKfyve kinase, which orchestrates in combination with Vac14 and Fig4. Dysfunction of this complex leads to large intracellular vacuoles in various cell types and is linked to neurological diseases. Here, we characterize the vacuolization phenotype caused by overexpression of the PIKfyve binding deficient mutant Vac14L156R in podocytes, which represent specialized cells of the kidney. Vacuolization of podocytes, which was associated with strong maturation defects in the endolysosomal system, could be completely rescued by starvation or treatment of cells with the v-ATPase inhibitor Bafilomycin A1. Moreover, we elucidated a strong and reversible de-vacuolization effect of the cholesterol export inhibitor U18666A, which was accompanied by increased basification of the lysosomal pH values. Taken together, our data give new hints to potential therapeutic targets in the treatment of disease linked to intracellular vacuolization.


Asunto(s)
Medio de Cultivo Libre de Suero/farmacología , Inhibidores Enzimáticos/farmacología , Macrólidos/farmacología , Proteínas de la Membrana/genética , Podocitos/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/genética , Sustitución de Aminoácidos/genética , Células Cultivadas , Alimentos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Podocitos/metabolismo , Podocitos/ultraestructura , Regulación hacia Arriba/genética , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores
10.
Mol Cell Proteomics ; 13(6): 1397-411, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24578385

RESUMEN

The scaffold protein Vac14 acts in a complex with the lipid kinase PIKfyve and its counteracting phosphatase FIG4, regulating the interconversion of phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate. Dysfunctional Vac14 mutants, a deficiency of one of the Vac14 complex components, or inhibition of PIKfyve enzymatic activity results in the formation of large vacuoles in cells. How these vacuoles are generated and which processes are involved are only poorly understood. Here we show that ectopic overexpression of wild-type Vac14 as well as of the PIKfyve-binding deficient Vac14 L156R mutant causes vacuoles. Vac14-dependent vacuoles and PIKfyve inhibitor-dependent vacuoles resulted in elevated levels of late endosomal, lysosomal, and autophagy-associated proteins. However, only late endosomal marker proteins were bound to the membranes of these enlarged vacuoles. In order to decipher the linkage between the Vac14 complex and regulators of the endolysosomal pathway, a protein affinity approach combined with multidimensional protein identification technology was conducted, and novel molecular links were unraveled. We found and verified the interaction of Rab9 and the Rab7 GAP TBC1D15 with Vac14. The identified Rab-related interaction partners support the theory that the regulation of vesicular transport processes and phosphatidylinositol-modifying enzymes are tightly interconnected.


Asunto(s)
Autofagia/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/biosíntesis , Flavoproteínas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Mapas de Interacción de Proteínas/genética , Proteómica , Transducción de Señal , Proteínas de Unión al GTP rab/biosíntesis , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
11.
Mol Pharm ; 10(6): 2370-80, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23607617

RESUMEN

Kidney transplanted patients are often treated with immunosuppressive, antihypertensive, and antibiotic drugs such as cyclosporine A (CsA), ß-blockers, and fluoroquinolones, respectively. Organic cation transporters (OCT) expressed in the basolateral membrane of proximal tubules represent an important drug excretion route. In this work, the renal expression of OCT after syngeneic and allogeneic kidney transplantation in rats with or without CsA immunosuppression was studied. Moreover, the interactions of CsA, ß-blockers (pindolol/atenolol), and fluoroquinolones (ofloxacin/norfloxacin) with rOCT1, rOCT2, hOCT1, and hOCT2 in stably transfected HEK293-cells were studied. Kidney transplantation was associated with reduced expression of rOCT1, while rOCT2 showed only reduced expression after allogeneic transplantation. All drugs interacted subtype- and species-dependently with OCT. However, only atenolol, pindolol, and ofloxacin were transported by hOCT2, the main OCT in human kidneys. While CsA is not an OCT substrate, it exerts a short-term effect on OCT activity, changing their affinity for some substrates. In conclusion, appropriate drug dosing in transplanted patients is difficult partly because OCT are down-regulated and because concomitant CsA treatment may influence the affinity of the transporters. Moreover, drug-drug competition at the transporter can also alter drug excretion rate.


Asunto(s)
Antagonistas Adrenérgicos beta/metabolismo , Fluoroquinolonas/metabolismo , Trasplante de Riñón/efectos adversos , Túbulos Renales Proximales/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Animales , Western Blotting , Línea Celular , Ciclosporina/uso terapéutico , Humanos , Inmunohistoquímica , Técnicas In Vitro , Túbulos Renales Proximales/efectos de los fármacos , Masculino , Proteínas de Transporte de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Am J Physiol Renal Physiol ; 300(5): F1152-62, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21228102

RESUMEN

The inhibition of mTOR kinase after renal transplantation has been associated with podocyte injury and proteinuria; however, the signaling pathways regulating these effects are not well understood. We found that prolonged rapamycin treatment in podocytes leads to an increase in glycogen synthase kinase 3ß (GSK3ß) phosphorylation, resulting in inactivation of total GSK3ß kinase activity. To investigate the cellular consequences of the inactivation of GSK3ß, we used two inhibitors reducing kinase activity and studied the cross talk between GSK3 function and the Akt/mammalian target of rapamycin (mTOR) pathway. Both GSK3 inhibitors reduced the phosphorylation of the mTOR downstream target, p70(S6K), indicating that GSK3 inhibition in podocytes is able to cause similar effects as treatment with rapamycin. Moreover, GSK3 inhibition was accompanied by the reduced expression of slit diaphragm-associated proteins and resulted in an altered cytoskeletal structure and reduced motility of podocytes, suggesting that GSK3 kinase can modulate Akt/mTOR-dependent signaling in podocytes.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proteínas del Citoesqueleto/antagonistas & inhibidores , Citoesqueleto/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Podocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/enzimología , Humanos , Inmunosupresores/farmacología , Indoles/farmacología , Cloruro de Litio/farmacología , Maleimidas/farmacología , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Fosforilación , Podocitos/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Proteínas WT1/metabolismo
13.
Nephrol Dial Transplant ; 25(8): 2492-501, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20176611

RESUMEN

BACKGROUND: Chronic allograft nephropathy, now more specifically termed interstitial fibrosis and tubular atrophy without evidence of any specific aetiology (IF/TA), is still an important cause of late graft loss. There is no effective therapy for IF/TA, in part due to the disease's multifactorial nature and its incompletely understood pathogenesis. METHODS: We used a differential in-gel electrophoresis and mass spectrometry technique to study IF/TA in a renal transplantation model. Dark Agouti (DA) kidneys were allogeneically transplanted to Wistar-Furth (DA-WF, aTX) rats. Syngeneic grafts (DA-DA, sTX) served as controls. Nine weeks after transplantation, blood pressure, renal function and electrolytes were studied, in addition to real-time PCR, western blot analysis, histology and immunohistochemistry. RESULTS: In contrast to sTX, the aTX developed IF/TA-dependent renal damage. Ten differentially regulated proteins were identified by 2D gel analysis and mass spectrometry, whereupon five proteins are mainly related to oxidative stress (aldo-keto reductase, peroxiredoxin-1, NAD(+)-dependent isocitrate dehydrogenase, iron-responsive element-binding protein-1 and serum albumin), two participate in cytoskeleton organization (l-plastin and ezrin) and three are assigned to metabolic functions (creatine kinase, ornithine aminotransferase and fructose-1,6-bisphosphatase). CONCLUSION: The proteins related to IF/TA and involved in oxidative stress, cytoskeleton organization and metabolic functions may correspond with novel therapeutic targets.


Asunto(s)
Trasplante de Riñón , Túbulos Renales/metabolismo , Nefritis Intersticial/metabolismo , Proteómica , Animales , Atrofia/metabolismo , Atrofia/patología , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Fibrosis/metabolismo , Fibrosis/patología , Túbulos Renales/patología , Masculino , Nefritis Intersticial/patología , Estrés Oxidativo/fisiología , Ratas , Ratas Endogámicas , Ratas Endogámicas WF , Trasplante Homólogo
14.
Am J Physiol Renal Physiol ; 296(2): F418-26, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19019920

RESUMEN

The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors can cause proteinuria, especially in kidney and heart transplanted patients. Podocytes play a major role in establishing the selective permeability of the blood-urine filtration barrier. Damage of these cells leads to proteinuria, a hallmark of most glomerular diseases. Interestingly, podocyte damage and focal segmental glomerulosclerosis can occur after treatment with an mTOR inhibitor in some transplant patients. To investigate the mechanisms of mTOR inhibitor-induced podocyte damage, we analyzed the effect of rapamycin on mTOR signaling and cellular function in human podocytes. We found that prolonged rapamycin treatment reduced the expression of total mTOR, which correlates with diminished levels of mTOR phosphorylation at Ser(2448) and Ser(2481). In addition, treatment with rapamycin reduced rictor expression and mTORC2 formation, resulting in a reduced phosphorylation of protein kinase B at Ser(473). The expression level of the slit-diaphragm proteins nephrin and transient receptor potential cation channel 6 as well as the cytoskeletal adaptor protein Nck significantly decreased. Moreover, rapamycin reduced cell adhesion and cell motility, which was accompanied by an enhanced formation of dot-like actin-rich structures. Our data provide new molecular insights explaining which pathways and molecules are affected in podocytes by an imbalanced mTOR function because of rapamycin treatment.


Asunto(s)
Inmunosupresores/farmacología , Uniones Intercelulares/efectos de los fármacos , Podocitos/efectos de los fármacos , Proteínas Quinasas/metabolismo , Sirolimus/farmacología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Humanos , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Proteínas Oncogénicas/metabolismo , Fosforilación , Podocitos/citología , Podocitos/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA