Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792620

RESUMEN

Research progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration. The size of nanoparticles, their shape, and the type of matrix can influence their biodistribution inside the skin strata and their cellular uptake. In this respect, an overview of some characterization methods employed to investigate nanoparticles intended for topical administration is presented here, namely dynamic light scattering, zeta potential, scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. In addition, the main fluorescence methods employed to detect the in vitro nanoparticles interaction with skin cell lines, such as fluorescence-activated cell sorting or confocal imaging, are described, considering different examples of applications. Finally, recent studies on the techniques employed to determine the nanoparticle presence in the skin by ex vivo and in vivo models are reported.

2.
Life (Basel) ; 14(1)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276284

RESUMEN

The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.

3.
Front Nutr ; 10: 1152254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324739

RESUMEN

The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.

4.
Front Pharmacol ; 13: 1018761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582523

RESUMEN

SARS-CoV viruses have been shown to downregulate cellular events that control antiviral defenses. They adopt several strategies to silence p53, key molecule for cell homeostasis and immune control, indicating that p53 has a central role in controlling their proliferation in the host. Specific actions are the stabilization of its inhibitor, MDM2, and the interference with its transcriptional activity. The aim of our work was to evaluate a new approach against SARS-CoV-2 by using MDM2 inhibitors to raise p53 levels and activate p53-dependent pathways, therefore leading to cell cycle inhibition. Experimental setting was performed in the alveolar basal epithelial cell line A549-hACE2, expressing high level of ACE2 receptor, to allow virus entry, as well as p53 wild-type. Cells were treated with several concentrations of Nutlin-3 or RG-7112, two known MDM2 inhibitors, for the instauration of a cell cycle block steady-state condition before and during SARS-CoV-2 infection, and for the evaluation of p53 activation and impact on virus release and related innate immune events. The results indicated an efficient cell cycle block with inhibition of the virion release and a significant inhibition of IL-6, NF-kB and IFN-λ expression. These data suggest that p53 is an efficient target for new therapies against the virus and that MDM2 inhibitors deserve to be further investigated in this field.

5.
Front Oncol ; 12: 1000677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338723

RESUMEN

MDM2 is the principal inhibitor of p53, and MDM2 inhibitors can disrupt the physical interaction between MDM2 and p53. The half-life of p53 is very short in normal cells and tissues, and an uncontrolled increase in p53 levels has potential harmful effects. It has been shown that p53 is frequently mutated in most cancers; however, p53 mutations are rare in retinoblastoma. Therefore, therapeutic strategies aimed at increasing the expression levels of wild-type p53 are attractive. In this minireview, we discuss the potential use of nutlin-3, the prototype small molecule inhibitor that disrupts the MDM2-p53 interaction, for the treatment of retinoblastoma. Although p53 has pleiotropic biological effects, the functions of p53 depend on its sub-cellular localization. In the nucleus, p53 induces the transcription of a vast array of genes, while in mitochondria, p53 regulates mitochondrial metabolism. This review also discusses the relative contribution of p53-mediated gene transcription and mitochondrial perturbation for retinoblastoma treatment.

6.
Front Med (Lausanne) ; 9: 902713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911386

RESUMEN

Starting from the beginning of the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) global pandemic, most of the published data has concentrated on the respiratory signs and symptoms of Covid-19 infection, underestimating the presence and importance of ocular manifestations, such as conjunctivitis, usually reported in SARS-CoV-2 infected patients. With the present review we intend to resume the ocular involvement in SARS-CoV-2 infection and the recent discoveries about the different cell types and tissues of the eye that can be directly infected by SARS-CoV-2 and propagate the infection. Moreover, reviewing literature data about p53 expression in normal and diseased eye tissues, we hypothesize that the pleiotropic protein p53 present at high levels in cornea, conjunctiva and tear film might play a protective role against SARS-CoV-2 infection. Since p53 can be easily up-regulated by using small molecule non-genotoxic inhibitors of MDM2, we propose that topical use of Nutlin-3, the prototype member of MDM2 inhibitors, might protect the anterior surface of the eye from SARS-CoV-2 infection, reducing the spreading of the virus.

10.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770777

RESUMEN

Cultivation of asparagus (Asparagus officinalis L.; Asp) for food and medicinal use has taken place since the early Roman Empire. Today, Asp represents a worldwide diffuse perennial crop. Lower portions of the spears represent a food industry waste product that can be used to extract bioactive molecules. In this study, aqueous extracts derived from the non-edible portion of the plant (hard stem) were prepared and characterized for chemical content. Furthermore, the biocompatibility and bioactivity of Asp aqueous extracts were assessed in vitro on normal fibroblasts and on breast cancer cell lines. Results showed no interference with fibroblast viability, while a remarkable cytostatic concentration-dependent activity, with significant G1/S cell cycle arrest, was specifically observed in breast cancer cells without apoptosis induction. Asp extracts were also shown to significantly inhibit cell migration. Further analyses showed that Asp extracts were characterized by specific pro-oxidant activity against tumoral cells, and, importantly, that their combination with menadione resulted in a significant enhancement of oxidants production with respect to menadione alone in breast cancer cells but not in normal cells. This selectivity of action on tumoral cells, together with the easiness of their preparation, makes the aqueous Asp extracts very attractive for further investigation in breast cancer research, particularly to investigate their role as possible co-adjuvant agents of clinical drug therapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Asparagus/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Biomarcadores , Neoplasias de la Mama , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cromatografía Liquida , Femenino , Citometría de Flujo , Humanos , Ratones , Espectrometría de Masas en Tándem
11.
Curr Oncol ; 28(4): 2439-2451, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34287267

RESUMEN

In B-chronic lymphocytic leukemia (B-CLL), the interaction between leukemic cells and the microenvironment promotes tumor cell survival. The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib is one of the first-in-class molecules for the treatment of B-CLL patients; however, the emerging mechanisms of resistance to ibrutinib call for new therapeutic strategies. The purpose of the current study was to investigate the ability of ibrutinib plus the MDM2-inhibitor nutlin-3 to counteract the tumor microenvironment protective effect. We observed that primary B-CLL cells cultivated in microenvironment mimicking conditions were protected from apoptosis by the up-regulation of c-MYC and of p53. In the same setting, combined treatments with ibrutinib plus nutlin-3 led to significantly higher levels of apoptosis compared to the single treatments, counteracting the c-MYC up-regulation. Moreover, the combination induced high p53 levels and a significant dissipation of the mitochondrial membrane potential, together with BAX cleavage in the more active p18 form and phospho-BAD down-regulation, that are key components of the mitochondrial apoptotic pathway, enhancing the apoptosis level. Our findings propose a new therapeutic strategy to overcome the tumor microenvironment protection involved in B-CLL resistance to drugs, with possible clinical implications also for other hematologic and solid tumors for which ibrutinib is considered a therapeutic option.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Apoptosis , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Células Tumorales Cultivadas , Microambiente Tumoral
12.
Sci Rep ; 10(1): 1834, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31996758

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Clin Sci (Lond) ; 133(10): 1145-1166, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31097613

RESUMEN

Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.


Asunto(s)
Citocina TWEAK/metabolismo , Enfermedades Renales/metabolismo , Osteoprotegerina/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Biomarcadores/metabolismo , Nefropatías Diabéticas/metabolismo , Humanos , Riñón/metabolismo
14.
Expert Opin Drug Deliv ; 16(5): 481-496, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30955393

RESUMEN

INTRODUCTION: Progressive breakthroughs in nanomedicine have been instrumental for the clinical translation of actively targeted drug-delivery approaches. Besides storing large payloads of drugs within the nanoparticle core, the conjugation of targeting moieties confers specific targeting ability to the nanoplatforms. In this respect, clinical results suggest that actively targeted nanocarriers can exhibit an overall improved antitumor efficacy, minimizing off-target toxicity. AREAS COVERED: This review article summarizes the advances in active targeting of nanocarriers to cancer cells. Specifically, we discuss the various types of nanocarriers, describe the receptors that are frequently overexpressed in solid tumors, and discuss how this approach can be used to improve clinical outcomes. We particularly focus on ongoing clinical trials of actively targeted nanoparticles that are yet to be clinically approved. EXPERT OPINION: Further investment in active targeting will likely pose clinical benefits. We envisage a future requiring the use of longitudinal measures in the clinical setting to profile the patients that are likely to benefit from actively targeted nanocarriers. At the preclinical stage, a complete picture of intratumoral barriers combined with a quantitative approach of the intratumoral fate of nanomaterials will be instrumental in defining more effective strategies to improve their clinical translation.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Animales , Portadores de Fármacos/química , Humanos , Nanomedicina/métodos , Nanopartículas/administración & dosificación
15.
Sci Rep ; 8(1): 17665, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518946

RESUMEN

Snail mucus is a mixture of active substances commonly thought to have healthy properties for the treatment of skin disorders. Although snail mucus is an ingredient of several cosmetic and para-pharmaceutic products, a comprehensive characterization of chemical composition and biological effects is still missing. Crude purified extracts from Helix aspersa muller mucus (HelixComplex) were prepared and, after chemical characterization, tested on in vitro experimental models. Differently from what expected, HelixComplex was characterized by the presence of small amounts of glycolic acid and allantoin. By using different in vitro assays on fibroblast cultures, we found that HelixComplex lacked of cytotoxicity, protected cells from apoptosis (p < 0.05) and, importantly, was able to significantly induce cell proliferation and migration through direct and indirect mechanisms. These effects were associated to morphological changes, cytoskeleton re-organization and release of cytokines. In conclusion, our findings suggest that snail mucus biological effects are attributable to cell proliferation and migration, and pave the way for further investigating snail mucus potential as therapeutic agent.


Asunto(s)
Movimiento Celular , Proliferación Celular , Fibroblastos/citología , Caracoles Helix/química , Moco/química , Alantoína/análisis , Alantoína/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Glicolatos/análisis , Glicolatos/farmacología , Caracoles Helix/microbiología , Humanos , Ratones , Moco/microbiología , Células 3T3 NIH , Cicatrización de Heridas/efectos de los fármacos
17.
PLoS One ; 13(9): e0203716, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30204795

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) patients experience a high risk of cardiovascular disease (CV); however, the factors involved in CV-related morbidity and mortality in these patients have not been fully defined. Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is a cytokine, which exhibits pleiotropic activities on endothelial, vascular smooth muscle and inflammatory cells, with relevant effects on atheromatous plaque formation. On this basis, the present study aims to investigate the role of TRAIL in atheromatosis progression in CKD patients. METHODS: Circulating TRAIL levels were measured in 378 CKD patients belonging to the Spanish National Observatory of Atherosclerosis in Nephrology (NEFRONA) study. All patients were free of previous CV events. Carotid and femoral B-mode ultrasound was performed to detect the presence of plaque at baseline and after 24 months of follow-up. RESULTS: The lowest levels of TRAIL at baseline were significantly (p<0.05) associated with the appearance, after 24 months of follow-up, of at least two new atheromatous plaques in all territories and of one new plaque in the carotid artery, even after adjusting for CV risk factors. In addition, the patients with low levels of TRAIL at baseline were characterized by the presence of at least one hypoechoic plaque in the carotid artery. This association was significant (p<0.05) even after adjusting for CKD stage. CONCLUSIONS: Overall, the results of our study suggest TRAIL as an assertable independent prognostic biomarker for atheromatosis plaque formation in CKD patients. This observation further supports the potential role of TRAIL for the prevention/treatment of CV disease.


Asunto(s)
Aterosclerosis/patología , Insuficiencia Renal Crónica/diagnóstico , Ligando Inductor de Apoptosis Relacionado con TNF/sangre , Adulto , Anciano , Aterosclerosis/complicaciones , Biomarcadores/sangre , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Índice de Severidad de la Enfermedad , Ultrasonografía
18.
Mol Med ; 24(1): 42, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30134823

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an inflammatory, demyelinating and degenerative disorder of the central nervous system (CNS). Several observations support interactions between vascular and neurodegenerative mechanisms in multiple sclerosis (MS). To investigate the contribution of the extracranial venous compartment, we analysed expression profiles of internal jugular vein (IJV), which drains blood from CNS, and related plasma protein levels. METHODS: We studied a group of MS patients (n = 19), screened by echo-color Doppler and magnetic resonance venography, who underwent surgical reconstruction of IJV for chronic cerebrospinal venous insufficiency (CCSVI). Microarray-based transcriptome analysis was conducted on specimens of IJV wall from MS patients and from subjects undergoing carotid endarterectomy, as controls. Protein levels were determined by multiplex assay in: i) jugular and peripheral plasma from 17 MS/CCSVI patients; ii) peripheral plasma from 60 progressive MS patients, after repeated sampling and iii) healthy individuals. RESULTS: Of the differentially expressed genes (≥ 2 fold-change, multiple testing correction, P < 0.05), the immune-related CD86 (8.5 fold-change, P = 0.002) emerged among the up regulated genes (N = 409). Several genes encoding HOX transcription factors and histones potentially regulated by blood flow, were overexpressed. Smooth muscle contraction and cell adhesion processes emerged among down regulated genes (N = 515), including the neuronal cell adhesion L1CAM as top scorer (5 fold-change, P = 5 × 10- 4). Repeated measurements in jugular/peripheral plasma and overtime in peripheral plasma showed conserved individual plasma patterns for immune-inflammatory (CCL13, CCL18) and adhesion (NCAM1, VAP1, SELL) proteins, despite significant variations overtime (SELL P < 0.0001). Both age and MS disease phenotypes were determinants of VAP1 plasma levels. Data supported cerebral related-mechanisms regulating ANGPT1 levels, which were remarkably lower in jugular plasma and correlated in repeated assays but not between jugular/peripheral compartments. CONCLUSIONS: This study provides for the first time expression patterns of the IJV wall, suggesting signatures of altered vascular mRNA profiles in MS disease also independently from CCSVI. The combined transcriptome-protein analysis provides intriguing links between IJV wall transcript alteration and plasma protein expression, thus highlighting proteins of interest for MS pathophysiology.


Asunto(s)
Proteínas Sanguíneas/análisis , Venas Yugulares/metabolismo , Esclerosis Múltiple/genética , Transcriptoma , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , ARN Mitocondrial/metabolismo
19.
Front Neurol ; 9: 245, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29731736

RESUMEN

BACKGROUND: Factor XII (FXII) activation initiates the intrinsic (contact) coagulation pathway. It has been recently suggested that FXII could act as an autoimmunity mediator in multiple sclerosis (MS). FXII depositions nearby dentritic cells were detected in the central nervous system of MS patients and increased FXII activity has been reported in plasma of relapsing remitting and secondary progressive MS patients. FXII inhibition has been proposed to treat MS. OBJECTIVE: To investigate in MS patients multiple FXII-related variables, including the circulating amount of protein, its pro-coagulant function, and their variation over time. To explore kinetic activation features of FXII in thrombin generation (TG). METHODS: In plasma from 74 MS patients and 49 healthy subjects (HS), FXII procoagulant activity (FXII:c) and FXII protein (FXII:Ag) levels were assessed. Their ratio (FXII:ratio) values were derived. Intrinsic TG was evaluated by different triggers. RESULTS: Higher FXII:Ag levels (p = 0.003) and lower FXII:ratio (p < 0.001) were detected in MS patients compared with HS. FXII variables were highly correlated over four time points, which supports investigation of FXII contribution to disease phenotype and progression. A significant difference over time was detected for FXII:c (p = 0.031). In patients selected for the lowest FXII:ratio, TG triggered by ellagic acid showed a trend in lower endogenous thrombin potential (ETP) in MS patients compared with HS (p = 0.042). Intrinsic triggering of TG by nucleic acid addition produced longer time parameters in patients than in HS and substantially increased ETP in MS patients (p = 0.004) and TG peak height in HS (p = 0.008). Coherently, lower FXII:ratio and longer lag time (p = 0.02) and time to peak (p = 0.007) point out a reduced response of FXII to activation in part of MS patients. CONCLUSION: In MS patients, factor-specific and modified global assays suggest the presence of increased FXII protein level and reduced function within the intrinsic coagulation pathway. These novel findings support further investigation by multiple approaches of FXII contribution to disease phenotype and progression.

20.
Oncotarget ; 8(35): 59235-59245, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28938632

RESUMEN

Ibrutinib blocks B-cell receptor signaling and interferes with leukemic cell-to-microenvironment interactions. Ibrutinib plays a key role in the management of B-CLL and is recommended for first line treatment of high-risk CLL patients with 17p deletion. Therefore, elucidating the factors governing sensitivity/resistance to Ibrutinib represents a relevant issue. For this purpose, in 3 B-CLL patient samples harboring functional TP53 mutations, the frequency of the mutated clones was monitored during in vivo Ibrutinib therapy, revealing a progressive decline of the frequency of TP53mut clones during 12 months of treatment. In parallel, the anti-leukemic activity of Ibrutinib was assessed in vitro on B-CLL patient cell cultures in combination with γ-secretase inhibitors (GSI). In the in vitro assays, the combination of Ibrutinib+GSI exhibited enhanced cytotoxicity on B-CLL cells also in the presence of stroma and it was coupled to the down-regulation of the stroma-activated NOTCH1 and c-MYC pathways. Moreover, the combined treatment was effective in reducing CXCR4 expression and functions. Therefore, the ability of GSI to enhance the Ibrutinib anti-leukemic activity in B-CLL cells, by down-regulating the NOTCH1 and c-MYC pathways, warrants further experimentation for its potential therapeutic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...