Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 617(7959): 139-146, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37076617

RESUMEN

Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types1. PTEN is the major negative regulator of PI3K signalling. The PI3Kß isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kß activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both Pten and Trp53 (which encodes p53), we show that genetic inactivation of PI3Kß led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kß inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kß inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kß controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kß inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.


Asunto(s)
Evasión Inmune , Neoplasias Mamarias Animales , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasa , Animales , Ratones , Inmunoterapia , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Transducción de Señal , Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/inmunología , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/inmunología
2.
Mol Cancer Res ; 20(5): 673-685, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35105671

RESUMEN

A common outcome of androgen deprivation in prostate cancer therapy is disease relapse and progression to castration-resistant prostate cancer (CRPC) via multiple mechanisms. To gain insight into the recent clinical findings that highlighted genomic alterations leading to hyperactivation of PI3K, we examined the roles of the commonly expressed p110 catalytic isoforms of PI3K in a murine model of Pten-null invasive CRPC. While blocking p110α had negligible effects in the development of Pten-null invasive CRPC, either genetic or pharmacologic perturbation of p110ß dramatically slowed CRPC initiation and progression. Once fully established, CRPC tumors became partially resistant to p110ß inhibition, indicating the acquisition of new dependencies. Driven by our genomic analyses highlighting potential roles for the p110ß/RAC/PAK1 and ß-catenin pathways in CRPC, we found that combining p110ß with RAC/PAK1 or tankyrase inhibitors significantly reduced the growth of murine and human CRPC organoids in vitro and in vivo. Because p110ß activity is dispensable for most physiologic processes, our studies support novel therapeutic strategies both for preventing disease progression into CRPC and for treating CRPC. IMPLICATIONS: This work establishes p110ß as a promising target for preventing the progression of primary PTEN-deficient prostate tumors to CRPC, and for treating established CRPC in combination with RAC/PAK1 or tankyrase inhibitors.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Tanquirasas , Antagonistas de Andrógenos , Animales , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas , Próstata , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética
3.
Proc Natl Acad Sci U S A ; 117(39): 24427-24433, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929011

RESUMEN

PIK3CA hotspot mutation is well established as an oncogenic driver event in cancer and its durable and efficacious inhibition is a focus in the development and testing of clinical cancer therapeutics. However, hundreds of cancer-associated PIK3CA mutations remain uncharacterized, their sensitivity to PI3K inhibitors unknown. Here, we describe a series of PIK3CA C-terminal mutations, primarily nucleotide insertions, that produce a frame-shifted protein product with an extended C terminus. We report that these mutations occur at a low frequency across multiple cancer subtypes, including breast, and are sufficient to drive oncogenic transformation in vitro and in vivo. We demonstrate that the oncogenicity of these mutant p110α proteins is dependent on p85 but not Ras association. P110α-selective pharmacologic inhibition blocks transformation in cells and mammary tumors characterized by PIK3CA C-terminal mutation. Taken together, these results suggest patients with breast and other tumors characterized by PIK3CA C-terminal frameshift mutations may derive benefit from p110α-selective inhibitors, including the recently FDA-approved alpelisib.


Asunto(s)
Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación del Sistema de Lectura , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Dominios Proteicos
4.
Proc Natl Acad Sci U S A ; 115(41): E9600-E9609, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254159

RESUMEN

BRCA1 is an established breast and ovarian tumor suppressor gene that encodes multiple protein products whose individual contributions to human cancer suppression are poorly understood. BRCA1-IRIS (also known as "IRIS"), an alternatively spliced BRCA1 product and a chromatin-bound replication and transcription regulator, is overexpressed in various primary human cancers, including breast cancer, lung cancer, acute myeloid leukemia, and certain other carcinomas. Its naturally occurring overexpression can promote the metastasis of patient-derived xenograft (PDX) cells and other human cancer cells in mouse models. The IRIS-driven metastatic mechanism results from IRIS-dependent suppression of phosphatase and tensin homolog (PTEN) transcription, which in turn perturbs the PI3K/AKT/GSK-3ß pathway leading to prolyl hydroxylase-independent HIF-1α stabilization and activation in a normoxic environment. Thus, despite the tumor-suppressing genetic origin of IRIS, its properties more closely resemble those of an oncoprotein that, when spontaneously overexpressed, can, paradoxically, drive human tumor progression.


Asunto(s)
Empalme Alternativo , Proteína BRCA1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/metabolismo , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Animales , Proteína BRCA1/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Neoplasias/genética , Neoplasias/patología , Fosfohidrolasa PTEN/genética
6.
Cell Discov ; 2: 16030, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27672444

RESUMEN

Loss of PTEN, a negative regulator of the phosphoinositide 3-kinase signaling pathway, is a frequent event in T-cell acute lymphoblastic leukemia, suggesting the importance of phosphoinositide 3-kinase activity in this disease. Indeed, hyperactivation of the phosphoinositide 3-kinase pathway is associated with the disease aggressiveness, poor prognosis and resistance to current therapies. To identify a molecular pathway capable of cooperating with PTEN deficiency to drive oncogenic transformation of leukocytes, we performed an unbiased transformation screen with a library of tyrosine kinases. We found that activation of NTRK2 is able to confer a full growth phenotype of Ba/F3 cells in an IL3-independent manner in the PTEN-null setting. NTRK2 activation cooperates with PTEN deficiency through engaging both phosphoinositide3-kinase/AKT and JAK/STAT3 pathway activation in leukocytes. Notably, pharmacological inhibition demonstrated that p110α and p110δ are the major isoforms mediating the phosphoinositide 3-kinase/AKT signaling driven by NTRK2 activation in PTEN-deficient leukemia cells. Furthermore, combined inhibition of phosphoinositide 3-kinase and STAT3 significantly suppressed proliferation of PTEN-mutant T-cell acute lymphoblastic leukemia both in culture and in mouse xenografts. Together, our data suggest that a unique conjunction of PTEN deficiency and NTRK2 activation in T-cell acute lymphoblastic leukemia, and combined pharmacologic inhibition of phosphoinositide 3-kinase and STAT3 signaling may serve as an effective and durable therapeutic strategy for T-cell acute lymphoblastic leukemia.

7.
Nat Commun ; 6: 8501, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26442967

RESUMEN

The tumour suppressor PTEN, which antagonizes PI3K signalling, is frequently inactivated in haematologic malignancies. In mice, deletion of PTEN in haematopoietic stem cells (HSCs) causes perturbed haematopoiesis, myeloproliferative neoplasia (MPN) and leukaemia. Although the roles of the PI3K isoforms have been studied in PTEN-deficient tumours, their individual roles in PTEN-deficient HSCs are unknown. Here we show that when we delete PTEN in HSCs using the Mx1-Cre system, p110ß ablation prevents MPN, improves HSC function and suppresses leukaemia initiation. Pharmacologic inhibition of p110ß in PTEN-deficient mice recapitulates these genetic findings, but suggests involvement of both Akt-dependent and -independent pathways. Further investigation reveals that a p110ß-Rac signalling loop plays a critical role in PTEN-deficient HSCs. Together, these data suggest that myeloid neoplasia driven by PTEN loss is dependent on p110ß via p110ß-Rac-positive-feedback loop, and that disruption of this loop may offer a new and effective therapeutic strategy for PTEN-deficient leukaemia.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia/genética , Trastornos Mieloproliferativos/genética , Fosfohidrolasa PTEN/genética , Animales , Western Blotting , Médula Ósea/metabolismo , Carcinogénesis/genética , Quimiotaxis , Citometría de Flujo , Inmunohistoquímica , Ratones , Proteínas de Unión al GTP rac
8.
Cell ; 163(1): 174-86, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406377

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that exhibits extremely high levels of genetic complexity and yet a relatively uniform transcriptional program. We postulate that TNBC might be highly dependent on uninterrupted transcription of a key set of genes within this gene expression program and might therefore be exceptionally sensitive to inhibitors of transcription. Utilizing kinase inhibitors and CRISPR/Cas9-mediated gene editing, we show here that triple-negative but not hormone receptor-positive breast cancer cells are exceptionally dependent on CDK7, a transcriptional cyclin-dependent kinase. TNBC cells are unique in their dependence on this transcriptional CDK and suffer apoptotic cell death upon CDK7 inhibition. An "Achilles cluster" of TNBC-specific genes is especially sensitive to CDK7 inhibition and frequently associated with super-enhancers. We conclude that CDK7 mediates transcriptional addiction to a vital cluster of genes in TNBC and CDK7 inhibition may be a useful therapy for this challenging cancer.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Regulación Neoplásica de la Expresión Génica , Transcripción Genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Quinasa Activadora de Quinasas Ciclina-Dependientes
9.
Elife ; 3: e01763, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24844244

RESUMEN

Despite marked advances in breast cancer therapy, basal-like breast cancer (BBC), an aggressive subtype of breast cancer usually lacking estrogen and progesterone receptors, remains difficult to treat. In this study, we report the identification of MELK as a novel oncogenic kinase from an in vivo tumorigenesis screen using a kinome-wide open reading frames (ORFs) library. Analysis of clinical data reveals a high level of MELK overexpression in BBC, a feature that is largely dependent on FoxM1, a master mitotic transcription factor that is also found to be highly overexpressed in BBC. Ablation of MELK selectively impairs proliferation of basal-like, but not luminal breast cancer cells both in vitro and in vivo. Mechanistically, depletion of MELK in BBC cells induces caspase-dependent cell death, preceded by defective mitosis. Finally, we find that Melk is not required for mouse development and physiology. Together, these data indicate that MELK is a normally non-essential kinase, but is critical for BBC and thus represents a promising selective therapeutic target for the most aggressive subtype of breast cancer.DOI: http://dx.doi.org/10.7554/eLife.01763.001.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Células Epiteliales/fisiología , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Células Madre , Trasplante Heterólogo
10.
Proc Natl Acad Sci U S A ; 111(17): 6395-400, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24737887

RESUMEN

There has been increasing interest in the use of isoform-selective inhibitors of phosphatidylinositide-3-kinase (PI3K) in cancer therapy. Using conditional deletion of the p110 catalytic isoforms of PI3K to predict sensitivity of cancer types to such inhibitors, we and others have demonstrated that tumors deficient of the phosphatase and tensin homolog (PTEN) are often dependent on the p110ß isoform of PI3K. Because human cancers usually arise due to multiple genetic events, determining whether other genetic alterations might alter the p110 isoform requirements of PTEN-null tumors becomes a critical question. To investigate further the roles of p110 isoforms in PTEN-deficient tumors, we used a mouse model of ovarian endometrioid adenocarcinoma driven by concomitant activation of the rat sarcoma protein Kras, which is known to activate p110α, and loss of PTEN. In this model, ablation of p110ß had no effect on tumor growth, whereas p110α ablation blocked tumor formation. Because ablation of PTEN alone is often p110ß dependent, we wondered if the same held true in the ovary. Because PTEN loss alone in the ovary did not result in tumor formation, we tested PI3K isoform dependence in ovarian surface epithelium (OSE) cells deficient in both PTEN and p53. These cells were indeed p110ß dependent, whereas OSEs expressing activated Kras with or without PTEN loss were p110α dependent. Furthermore, isoform-selective inhibitors showed a similar pattern of the isoform dependence in established Kras(G12D)/PTEN-deficient tumors. Taken together, our data suggest that, whereas in some tissues PTEN-null tumors appear to inherently depend on p110ß, the p110 isoform reliance of PTEN-deficient tumors may be altered by concurrent mutations that activate p110α.


Asunto(s)
Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Inmunohistoquímica , Isoenzimas/metabolismo , Ratones , Neoplasias Ováricas/patología , Fosfohidrolasa PTEN/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratas
11.
J Clin Invest ; 124(4): 1794-809, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24569456

RESUMEN

The genes encoding RAS family members are frequently mutated in juvenile myelomonocytic leukemia (JMML) and acute myeloid leukemia (AML). RAS proteins are difficult to target pharmacologically; therefore, targeting the downstream PI3K and RAF/MEK/ERK pathways represents a promising approach to treat RAS-addicted tumors. The p110α isoform of PI3K (encoded by Pik3ca) is an essential effector of oncogenic KRAS in murine lung tumors, but it is unknown whether p110α contributes to leukemia. To specifically examine the role of p110α in murine hematopoiesis and in leukemia, we conditionally deleted p110α in HSCs using the Cre-loxP system. Postnatal deletion of p110α resulted in mild anemia without affecting HSC self-renewal; however, deletion of p110α in mice with KRASG12D-associated JMML markedly delayed their death. Furthermore, the p110α-selective inhibitor BYL719 inhibited growth factor-independent KRASG12D BM colony formation and sensitized cells to a low dose of the MEK inhibitor MEK162. Furthermore, combined inhibition of p110α and MEK effectively reduced proliferation of RAS-mutated AML cell lines and disease in an AML murine xenograft model. Together, our data indicate that RAS-mutated myeloid leukemias are dependent on the PI3K isoform p110α, and combined pharmacologic inhibition of p110α and MEK could be an effective therapeutic strategy for JMML and AML.


Asunto(s)
Genes ras , Hematopoyesis/genética , Hematopoyesis/fisiología , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/enzimología , Leucemia Mielomonocítica Juvenil/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Eritropoyesis/genética , Eritropoyesis/fisiología , Xenoinjertos , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mielomonocítica Juvenil/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/deficiencia , Transducción de Señal
12.
Genes Dev ; 27(14): 1568-80, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873941

RESUMEN

PTEN hamartoma tumor syndrome (PHTS) comprises a collection of genetic disorders associated with germline mutations in the tumor suppressor gene PTEN. Therapeutic options and preventative measures for PHTS are limited. Using both genetically engineered mouse models and pharmacological PI3K isoform-selective inhibitors, we found that the roles of PI3K isoforms are spatially distinct in the skin: While p110α is responsible for the sustained survival of suprabasal cells of the epidermis in the absence of PTEN, p110ß is important for the hyperproliferation of basal cells in PHTS. Furthermore, we identified a differential expression pattern of p110α and p110ß in basal and suprabasal keratinocytes as well as differential PI3K regulation by upstream signals in the basal and suprabasal compartments of the epidermis, providing a potential molecular mechanism underlying the specific roles of PI3K isoforms in the epidermis. Finally, we demonstrate that combined inhibition of both PI3K isoforms prevents the development of PHTS and also reverses skin hamartomas that have reached advanced stages in mice. Together, these results not only advance our overall understanding of the diverse roles of PI3K isoforms, but also have the potential for meaningful translation via the clinical utilization of PI3K inhibitors for both prevention and therapy in PHTS patients.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Síndrome de Hamartoma Múltiple/patología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Epidermis/efectos de los fármacos , Epidermis/enzimología , Epidermis/patología , Síndrome de Hamartoma Múltiple/genética , Ratones , Proteína Oncogénica v-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosforilación , Isoformas de Proteínas , Inhibidores de Proteínas Quinasas/farmacología
13.
Cancer Discov ; 2(5): 425-33, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22588880

RESUMEN

UNLABELLED: Genetic approaches have shown that the p110ß isoform of class Ia phosphatidylinositol-3-kinase (PI3K) is essential for the growth of PTEN-null tumors. Thus, it is desirable to develop p110ß-specific inhibitors for cancer therapy. Using a panel of PI3K isoform-specific cellular assays, we screened a collection of compounds possessing activities against kinases in the PI3K superfamily and identified a potent and selective p110ß inhibitor: KIN-193. We show that KIN-193 is efficacious specifically in blocking AKT signaling and tumor growth that are dependent on p110ß activation or PTEN loss. Broad profiling across a panel of 422 human tumor cell lines shows that the PTEN mutation status of cancer cells strongly correlates with their response to KIN-193. Together, our data provide the first pharmacologic evidence that PTEN-deficient tumors are dependent on p110ß in animals and suggest that KIN-193 can be pursued as a drug to treat tumors that are dependent on p110ß while sparing other PI3K isoforms. SIGNIFICANCE: We report the first functional characterization of a p110ß-selective inhibitor, KIN-193, that is efficacious as an antitumor agent in mice. We show that this class of inhibitor holds great promise as a pharmacologic agent that could be used to address the potential therapeutic benefit of treating p110ß-dependent PTEN-deficient human tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Indazoles/farmacología , Indazoles/uso terapéutico , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/metabolismo , Neoplasias/patología , Proteína Oncogénica v-akt/metabolismo , Fosfohidrolasa PTEN/deficiencia , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Carga Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA