Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(6): 720-723, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36541159

RESUMEN

A benzo[rst]pentaphene (BPP) substituted by two bis(methoxyphenyl)amino (MeOPA) groups (BPP-MeOPA) was synthesized and clearly characterized by NMR and single-crystal X-ray analysis. Detailed investigations of its photophysical properties, including transient absorption spectroscopy analyses, revealed that the introduction of the MeOPA groups breaks the symmetry of the BPP core, improving its absorption and emission from an S1 state with both excitonic and charge-transfer character.


Asunto(s)
Óxido Nitroso , Solventes/química , Espectroscopía de Resonancia Magnética
2.
Inorg Chem ; 61(31): 12087-12096, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876142

RESUMEN

Ketones have been proven effective in extracting astatine(III) from aqueous solvents. Previous theoretical studies suggested a mechanism where the "sp2" lone pair on the carbonyl oxygen donates electron density into the π system of the AtO+ molecular cation to form a dative-type bond. In this study, co-extraction of NO3- as AtO(NO3)·(O═CR1R2) species into the organic phase appears to be a key factor. Adjusting the electronic properties of the ketone, by having an aryl group instead of an alkyl group in the alpha position of the ketone, increased the electron density on C═O, increased the bond strength between the ketone and AtO+, and in turn increased the extraction of 211At into the organic phase. Extraction with diketones shows dependence on the bridging distance between the two carbonyl moieties, where a C3 or longer bridge results in a 10-fold increase in extraction into the organic phase. DFT calculations show the longer bridge allows for the chelation of AtO(NO3) by either the second carbonyl or the phenyl ring.


Asunto(s)
Astato , Cetonas , Cationes , Solventes , Agua
3.
Photochem Photobiol Sci ; 20(6): 831-841, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34091863

RESUMEN

Vibrio cholerae cryptochrome-1 (VcCRY-1) is a member of the cryptochrome DASH family. The flavoprotein appears to use blue light both for repair of cyclobutane pyrimidine dimers (CPDs) on DNA and signal transduction. Earlier, we found that it was almost impossible to oxidize the FADH· state upon binding to a CPD, and, in the absence of substrate, the rate of FADH· oxidation was much larger at high pH (Gindt et al. in Biochemistry 54:2802-2805, 2015). Here, we present the pH-dependence of the oxidation of FADH· by ferricyanide, which revealed a switch between slow and fast oxidation with a pKa ≈ 7.0. Stopped-flow mixing was used to measure the oxidation of FADH- to FADH· at pH 6.7 and 7.5. Substrate binding was required to slow down this oxidation such that it could be measured with stopped flow, but there was only a small effect of pH. In addition, resonance Raman measurements of FADH· in VcCRY-1 at pH 6.5 and 7.5 were performed to probe for structural changes near the FAD cofactor related to the observed changes in rate of FADH· oxidation. Only substrate binding seemed to induce a change near the FAD cofactor that may relate to the change in oxidation kinetics. The pH-effect on the FADH· oxidation rate, which is rate-limited by the proton acceptor, does not seem to be due to a protein structural change near the FAD cofactor. Instead, a conserved glutamate in CRY-DASH may control the deprotonation of FADH· and give rise to the pH-effect.


Asunto(s)
Criptocromos/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ferricianuros/química , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...