Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 16: 797588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496908

RESUMEN

During adult neurogenesis, neuronal stem cells differentiate into mature neurons that are functionally integrated into the existing network. One hallmark during the late phase of this neurodifferentiation process is the formation of dendritic spines. These morphological specialized structures form the basis of most excitatory synapses in the brain, and are essential for neuronal communication. Additionally, dendritic spines are affected in neurological disorders, such as Alzheimer's disease or schizophrenia. However, the mechanisms underlying spinogenesis, as well as spine pathologies, are poorly understood. Plasticity-related Gene 5 (PRG5), a neuronal transmembrane protein, has previously been linked to spinogenesis in vitro. Here, we analyze endogenous expression of the PRG5 protein in different mouse brain areas, as well as on a subcellular level. We found that native PRG5 is expressed dendritically, and in high abundance in areas characterized by their regenerative capacity, such as the hippocampus and the olfactory bulb. During adult neurogenesis, PRG5 is specifically expressed in a late phase after neuronal cell-fate determination associated with dendritic spine formation. On a subcellular level, we found PRG5 not to be localized at the postsynaptic density, but at the base of the synapse. In addition, we showed that PRG5-induced formation of membrane protrusions is independent from neuronal activity, supporting a possible role in the morphology and stabilization of spines.

2.
Dev Dyn ; 251(4): 714-728, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34622503

RESUMEN

BACKGROUND: Plasticity-related genes (Prgs/PRGs) or lipid phosphate phosphatase-related proteins (LPPRs) comprise five known members, which have been linked to neuronal differentiation processes, such as neurite outgrowth, axonal branching, or dendritic spine formation. PRGs are highly brain-specific and belong to the lipid phosphate phosphatases (LPPs) superfamily, which influence lipid metabolism by dephosphorylation of bioactive lipids. PRGs, however, do not possess enzymatic activity, but modify lipid metabolism in a way that is still under investigation. RESULTS: We analyzed mRNA expression levels of all Prgs during mouse brain development, in the hippocampus, neocortex, olfactory bulbs, and cerebellum. We found different spatio-temporal expression patterns for each of the Prgs, and identified a high expression of the uncharacterized Prg4 throughout brain development. Unlike its close family members PRG3 and PRG5, PRG4 did not induce filopodial outgrowth in non-neuronal cell lines, and does not localize to the plasma membrane of filopodia. CONCLUSION: We showed PRG4 to be highly expressed in the developing and the adult brain, suggesting that it is of vital importance for normal brain function. Despite its similarities to other family members, it seems not to be involved in changes of cell morphology; instead, it is more likely to be associated with intracellular signaling.


Asunto(s)
Encéfalo , Monoéster Fosfórico Hidrolasas , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Hipocampo/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteoglicanos/metabolismo , Seudópodos
3.
J Biol Chem ; 294(25): 9985-9994, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31097540

RESUMEN

Heat shock protein family B (small) member 7 (HSPB7) is a unique, relatively unexplored member within the family of human small heat shock proteins (HSPBs). Unlike most HSPB family members, HSPB7 does not oligomerize and so far has not been shown to associate with any other member of the HSPB family. Intriguingly, it was found to be the most potent member within the HSPB family to prevent aggregation of proteins with expanded polyglutamine (polyQ) stretches. How HSPB7 suppresses polyQ aggregation has remained elusive so far. Here, using several experimental strategies, including in vitro aggregation assay, immunoblotting and fluorescence approaches, we show that the polyQ aggregation-inhibiting activity of HSPB7 is fully dependent on its flexible N-terminal domain (NTD). We observed that the NTD of HSPB7 is both required for association with and inhibition of polyQ aggregation. Remarkably, replacing the NTD of HSPB1, which itself cannot suppress polyQ aggregation, with the NTD of HSPB7 resulted in a hybrid protein that gained anti-polyQ aggregation activity. The hybrid NTDHSPB7-HSPB1 protein displayed a reduction in oligomer size and, unlike WT HSPB1, associated with polyQ. However, experiments with phospho-mimicking HSPB1 mutants revealed that de-oligomerization of HSPB1 alone does not suffice to gain polyQ aggregation-inhibiting activity. Together, our results reveal that the NTD of HSPB7 is both necessary and sufficient to bind to and suppress the aggregation of polyQ-containing proteins.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/química , Agregado de Proteínas , Proteínas de Choque Térmico HSP27/química , Humanos , Péptidos/metabolismo , Unión Proteica , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA