Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298863

RESUMEN

Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), which is anchored to the outer membranes of chloroplasts and mitochondria, affects carbon metabolism by modulating the import of some preproteins into chloroplasts and mitochondria. AtPAP9 bears a 72% amino acid sequence identity with AtPAP2, and both proteins carry a hydrophobic motif at their C-termini. Here, we show that AtPAP9 is a tail-anchored protein targeted to the outer membrane of chloroplasts. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that both AtPAP9 and AtPAP2 bind to a small subunit of rubisco 1B (AtSSU1B) and a number of chloroplast proteins. Chloroplast import assays using [35S]-labeled AtSSU1B showed that like AtPAP2, AtPAP9 also plays a role in AtSSU1B import into chloroplasts. Based on these data, we propose that AtPAP9 and AtPAP2 perform overlapping roles in modulating the import of specific proteins into chloroplasts. Most plant genomes contain only one PAP-like sequence encoding a protein with a hydrophobic motif at the C-terminus. The presence of both AtPAP2 and AtPAP9 in the Arabidopsis genome may have arisen from genome duplication in Brassicaceae. Unlike AtPAP2 overexpression lines, the AtPAP9 overexpression lines did not exhibit early-bolting or high-seed-yield phenotypes. Their differential growth phenotypes could be due to the inability of AtPAP9 to be targeted to mitochondria, as the overexpression of AtPAP2 on mitochondria enhances the capacity of mitochondria to consume reducing equivalents.


Asunto(s)
Fosfatasa Ácida/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secuencia de Aminoácidos , Brassicaceae/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Genoma de Planta/genética , Mitocondrias/genética
2.
Nat Commun ; 11(1): 3238, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591540

RESUMEN

The challenge of monitoring in planta dynamic changes of NADP(H) and NAD(H) redox states at the subcellular level is considered a major obstacle in plant bioenergetics studies. Here, we introduced two circularly permuted yellow fluorescent protein sensors, iNAP and SoNar, into Arabidopsis thaliana to monitor the dynamic changes in NADPH and the NADH/NAD+ ratio. In the light, photosynthesis and photorespiration are linked to the redox states of NAD(P)H and NAD(P) pools in several subcellular compartments connected by the malate-OAA shuttles. We show that the photosynthetic increases in stromal NADPH and NADH/NAD+ ratio, but not ATP, disappear when glycine decarboxylation is inhibited. These observations highlight the complex interplay between chloroplasts and mitochondria during photosynthesis and support the suggestions that, under normal conditions, photorespiration supplies a large amount of NADH to mitochondria, exceeding its NADH-dissipating capacity, and the surplus NADH is exported from the mitochondria to the cytosol through the malate-OAA shuttle.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Proteínas Luminiscentes/metabolismo , NADP/metabolismo , NAD/metabolismo , Fotosíntesis/efectos de la radiación , Respiración de la Célula/efectos de la radiación , Cloroplastos/metabolismo , Citosol/metabolismo , Transporte de Electrón/efectos de la radiación , Malatos/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Oxidación-Reducción , Peroxisomas/metabolismo , Plantones/metabolismo , Plantones/efectos de la radiación
3.
Proc Natl Acad Sci U S A ; 115(45): E10778-E10787, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352850

RESUMEN

Matching ATP:NADPH provision and consumption in the chloroplast is a prerequisite for efficient photosynthesis. In terms of ATP:NADPH ratio, the amount of ATP generated from the linear electron flow does not meet the demand of the Calvin-Benson-Bassham (CBB) cycle. Several different mechanisms to increase ATP availability have evolved, including cyclic electron flow in higher plants and the direct import of mitochondrial-derived ATP in diatoms. By imaging a fluorescent ATP sensor protein expressed in living Arabidopsis thaliana seedlings, we found that MgATP2- concentrations were lower in the stroma of mature chloroplasts than in the cytosol, and exogenous ATP was able to enter chloroplasts isolated from 4- and 5-day-old seedlings, but not chloroplasts isolated from 10- or 20-day-old photosynthetic tissues. This observation is in line with the previous finding that the expression of chloroplast nucleotide transporters (NTTs) in Arabidopsis mesophyll is limited to very young seedlings. Employing a combination of photosynthetic and respiratory inhibitors with compartment-specific imaging of ATP, we corroborate the dependency of stromal ATP production on mitochondrial dissipation of photosynthetic reductant. Our data suggest that, during illumination, the provision and consumption of ATP:NADPH in chloroplasts can be balanced by exporting excess reductants rather than importing ATP from the cytosol.


Asunto(s)
Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Técnicas Biosensibles/métodos , Cloroplastos/genética , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Luz , NADP/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
4.
Front Plant Sci ; 9: 410, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670639

RESUMEN

Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP+ oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

5.
Environ Sci Technol ; 52(7): 4385-4392, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554421

RESUMEN

The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP2- were used to monitor in vivo Pi and MgATP2- levels in plant cells. The results showed that nZVI could remove As(V) from growth media, decrease As uptake by plants, and mitigate As(V) toxicity to plants. However, excess nZVI could cause Pi starvation in plants leading to detrimental effects on plant growth. Due to the competitive adsorption of As(V) and Pi on nZVI, removing As(V) via nZVI treatment at an upstream site could relieve downstream plants from As(V) toxicity and Pi deprivation, in which case 100 mg/L of nZVI was the optimal dosage for remediation of As(V) at a concentration around 16.13 mg/L.


Asunto(s)
Arabidopsis , Restauración y Remediación Ambiental , Adenosina Trifosfato , Arseniatos , Hierro , Fosfatos
6.
Elife ; 62017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28716182

RESUMEN

Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.


Asunto(s)
Adenosina Trifosfato/análisis , Arabidopsis/fisiología , Metabolismo Energético , Células Vegetales/fisiología , Técnicas Biosensibles , Genes Reporteros , Homeostasis , Hipoxia , Proteínas Luminiscentes/análisis , Plantones/fisiología , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...