Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894280

RESUMEN

Underwater optical wireless communication (UOWC) has gained interest in recent years with the introduction of autonomous and remotely operated mobile systems in blue economic ventures such as offshore food production and energy generation. Here, we devised a model for estimating the received power distribution of diffused line-of-sight mobile optical links, accommodating irregular intensity distributions beyond the beam-spread angle of the emitter. We then used this model to conduct a spatial analysis investigating the parametric influence of the placement, orientation, and angular spread of photodiodes in array-based receivers on the mobile UOWC links in different Jerlov seawater types. It revealed that flat arrays were best for links where strict alignment could be maintained, whereas curved arrays performed better spatially but were not always optimal. Furthermore, utilizing two or more spectrally distinct wavelengths and more bandwidth-efficient modulation may be preferred for received-signal intensity-based localization and improving link range in clearer oceans, respectively. Considering the geometric implications of the array of receiver photodiodes for mobile UOWCs, we recommend the use of dynamically shape-shifting array geometries.

2.
Sci Rep ; 11(1): 22867, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819580

RESUMEN

Ecosystem feedbacks in response to ocean acidification can amplify or diminish diel pH oscillations in productive coastal waters. Benthic microalgae generate such oscillations in sediment porewater and here we ask how CO2 enrichment (acidification) of the overlying seawater alters these in the absence and presence of biogenic calcite. We placed a 1-mm layer of ground oyster shells, mimicking the arrival of dead calcifying biota (+Calcite), or sand (Control) onto intact silt sediment cores, and then gradually increased the pCO2 in the seawater above half of +Calcite and Control cores from 472 to 1216 µatm (pH 8.0 to 7.6, CO2:HCO3- from 4.8 to 9.6 × 10-4). Porewater [O2] and [H+] microprofiles measured 16 d later showed that this enrichment had decreased the O2 penetration depth (O2-pd) in +Calcite and Control, indicating a metabolic response. In CO2-enriched seawater: (1) sediment biogeochemical processes respectively added and removed more H+ to and from the sediment porewater in darkness and light, than in ambient seawater increasing the amplitude of the diel porewater [H+] oscillations, and (2) in darkness, calcite dissolution in +Calcite sediment decreased the porewater [H+] below that in overlying seawater, reversing the sediment-seawater H+ flux and decreasing the amplitude of diel [H+] oscillations. This dissolution did not, however, counter the negative effect of CO2 enrichment on O2-pd. We now hypothesise that feedback to CO2 enrichment-an increase in the microbial reoxidation of reduced solutes with O2-decreased the sediment O2-pd and contributed to the enhanced porewater acidification.

3.
Sci Rep ; 8(1): 1035, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348554

RESUMEN

Ocean acidification may alter the cycling of nitrogen in coastal sediment and so the sediment-seawater nitrogen flux, an important driver of pelagic productivity. To investigate how this perturbation affects the fluxes of NOX- (nitrite/nitrate), NH4+ and O2, we incubated estuarine sand and subtidal silt in recirculating seawater with a CO2-adjusted pH of 8.1 and 7.9. During a 41-day incubation, the seawater kept at pH 8.1 lost 97% of its NOX- content but the seawater kept at pH 7.9 lost only 18%. Excess CO2 increased benthic photosynthesis. In the silt, this was accompanied by a reversal of the initial NOX- efflux into influx. The estuarine sand sustained its initial NOX- influx but, by the end of the incubation, released more NH4+ at pH 7.9 than at pH 8.1. We hypothesise that these effects share a common cause; excess CO2 increased the growth of benthic microalgae and so nutrient competition with ammonia oxidising bacteria (AOB). In the silt, diatoms likely outcompeted AOB for NH4+ and photosynthesis increased the dark/light fluctuations in the pore water oxygenation inhibiting nitrification and coupled nitrification/denitrification. If this is correct, then excess CO2 may lead to retention of inorganic nitrogen adding to the pressures of increasing coastal eutrophication.

4.
Mar Pollut Bull ; 123(1-2): 324-328, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916349

RESUMEN

Plans to exploit an offshore source of iron sand in South Taranaki Bight (STB), New Zealand, caused concerns that such exploitation may expose benthic and pelagic biota to elevated trace metal concentrations. We conducted dilute-acid extractions and standard elutriate tests to investigate the potential of this exploitation to (1) create a new seafloor with elevated trace metal content, (2) mobilise trace metals during iron sand extraction and, (3) enrich the returning process seawater, which feeds iron sand through mills, with trace metals. We found that recruits of freshly uncovered sediment may encounter higher-than-natural concentrations of cadmium, nickel and chromium (but not of copper, lead, and zinc) and propose to investigate the bioavailability of these metals. Elutriate test with raw and milled iron sand revealed that, for nickel and copper, dilution of the process seawater may be required to meet the local water quality guideline. We argue that this dilution can be achieved by adjustment of the mass and seawater balance of the offshore extraction process.


Asunto(s)
Hierro , Metales/análisis , Minería/métodos , Agua de Mar/análisis , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos , Sedimentos Geológicos , Metales/toxicidad , Nueva Zelanda , Agua de Mar/química , Dióxido de Silicio , Calidad del Agua
5.
PLoS One ; 10(6): e0129894, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083351

RESUMEN

Growing numbers and increased stocking of marine mussel farms make reliable techniques for environmental effect assessment a priority. Previously, we showed how the color intensity of soft sediment could be used to estimate its acid volatile sulfide (AVS) content, a product of the anaerobic microbial degradation of organic matter deposits. We then proposed to include assessments of the AVS farm footprint in marine farm monitoring, in particular, to investigate temporal changes in the extent of the seafloor area of elevated sediment AVS content. Such assessment requires accurate detection of the AVS footprint boundary. Here, we demonstrate how to detect this boundary with analyses of sediment color intensity. We analyzed 182 sediment profile images taken along three transects leading from approximately 50 m inside to 200 m outside a long-line mussel farm in New Zealand and found that the mean sediment color intensity inside the farm boundary was almost one third lower than that of the sediment distant from the farm. Segmented regression analysis of the combined color intensity data revealed a breakpoint in the trend of increasing grey values with increasing distance from the farm at 56 ± 13 m (± 95% confidence interval of the breakpoint) outside the mussel farm. Statistical analyses indicated that the extent of the color intensity footprint was a function of water column depth, as was shown visually using mapping methods; organic particles disperse further in a deeper seawater column. We conclude that for soft coastal sediments, our sampling and data analysis techniques may provide a rapid and reliable supplement to existing benthic surveys that assess environmental effects of mussel farms.


Asunto(s)
Acuicultura , Bivalvos/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Fotograbar , Sulfuros/análisis , Animales , Bahías , Color , Nueva Zelanda , Sulfuros/química , Volatilización
6.
PLoS One ; 7(11): e50031, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209636

RESUMEN

BACKGROUND: Bioturbators affect multiple biogeochemical interactions and have been suggested as suitable candidates to mitigate organic matter loading in marine sediments. However, predicting the effects of bioturbators at an ecosystem level can be difficult due to their complex positive and negative interactions with the microbial community. METHODOLOGY/PRINCIPAL FINDINGS: We quantified the effects of deposit-feeding sea cucumbers on benthic algal biomass (microphytobenthos, MPB), bacterial abundance, and the sediment-seawater exchange of dissolved oxygen and nutrients. The sea cucumbers increased the efflux of inorganic nitrogen (ammonium, NH(4) (+)) from organically enriched sediments, which stimulated algal productivity. Grazing by the sea cucumbers on MPB (evidenced by pheopigments), however, caused a net negative effect on primary producer biomass and total oxygen production. Further, there was an increased abundance of bacteria in sediment with sea cucumbers, suggesting facilitation. The sea cucumbers increased the ratio of oxygen consumption to production in surface sediment by shifting the microbial balance from producers to decomposers. This shift explains the increased efflux of inorganic nitrogen and concordant reduction in organic matter content in sediment with bioturbators. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates the functional role and potential of sea cucumbers to ameliorate some of the adverse effects of organic matter enrichment in coastal ecosystems.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Pepinos de Mar/crecimiento & desarrollo , Amoníaco/química , Animales , Biomasa , Nitratos/química , Oxígeno/química , Fósforo/química , Agua de Mar/química , Agua de Mar/microbiología
7.
Mar Pollut Bull ; 64(12): 2885-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22944175

RESUMEN

We investigated the sediment-seawater solute flux at five sites in the polluted Avon-Heathcote Estuary, New Zealand, to provide a point of comparison for future studies of the effects of the closure of a major wastewater outfall into the estuary. Sediments collected in winters 2007 and 2008, and summer 2008, ranked consistently in organic matter content. Microelectrode profiling and sediment-core incubations revealed (1) a dominant role of microphytes in regulating solute flux causing significant differences in the dark and light sediment O2 consumption (R(d), R(l)), total sediment O2 utilisation (TOU(d), TOU(l)), and inorganic nutrient flux, (2) consistent ranking of sites in solute flux, and (3) a clear solute-flux signature of the wastewater effluent. Sediment near the wastewater outfall exhibited the highest absolute R and TOU(,) the lowest ratio R(l)/R(d,) the highest dark efflux of dissolved reactive phosphorus and ammonium, and the highest dark and light uptake of nitrate+nitrite.


Asunto(s)
Sedimentos Geológicos/química , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Estuarios/estadística & datos numéricos , Nueva Zelanda , Nitrógeno/análisis , Fósforo/análisis , Compuestos de Amonio Cuaternario/análisis , Aguas Residuales/análisis , Aguas Residuales/química , Aguas Residuales/estadística & datos numéricos
8.
Mar Biol ; 156(4): 669-677, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-32921817

RESUMEN

We investigated the constraints on sulfide uptake by bacterial ectosymbionts on the marine peritrich ciliate Zoothamnium niveum by a combination of experimental and numerical methods. Protists with symbionts were collected on large blocks of mangrove-peat. The blocks were placed in a flow cell with flow adjusted to in situ velocity. The water motion around the colonies was then characterized by particle tracking velocimetry. This shows that the feather-shaped colony of Z. niveum generates a unidirectional flow of seawater through the colony with no recirculation. The source of the feeding current was the free-flowing water although the size of the colonies suggests that they live partly submerged in the diffusive boundary layer. We showed that the filtered volume allows Z. niveum to assimilate sufficient sulfide to sustain the symbiosis at a few micromoles per liter in ambient concentration. Numerical modeling shows that sulfide oxidizing bacteria on the surfaces of Z. niveum can sustain 100-times higher sulfide uptake than bacteria on flat surfaces, such as microbial mats. The study demonstrates that the filter feeding zooids of Z. niveum are preadapted to be prime habitats for sulfide oxidizing bacteria due to Z. niveum's habitat preference and due to the feeding current. Z. niveum is capable of exploiting low concentrations of sulfide in near norm-oxic seawater. This links its otherwise dissimilar habitats and makes it functionally similar to invertebrates with thiotrophic symbionts in filtering organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...