RESUMEN
Bovine tuberculosis (bTB), mainly caused by Mycobacterium bovis (M. bovis), is a major economic disease of livestock worldwide. Vaccination is considered as a potentially sustainable adjunct to the current control strategy. Cattle vaccination with the live attenuated M. bovis bacillus Calmette-Guerin (BCG) confers variable protection; the reasons for this variability are not understood. Indoleamine 2, 3-dioxygenase (IDO), through the catalysis of tryptophan, is thought to have an immunoregulatory role in the immune response to Mycobacterium tuberculosis (M. tuberculosis). In this work, we used immunohistochemistry and digital image analysis to evaluate the presence of IDO in granulomas at different stages of development in cattle that had been BCG-vaccinated or not and then challenged with M. bovis. Our results show that the expression of IDO in granulomas from non-vaccinated M. bovis challenged animals is higher than in granulomas from BCG-vaccinated M. bovis challenged animals. Thus, it is possible that vaccination with BCG prevents the induction of what are thought to be host immunosuppressive pathways by M. bovis, which contribute to pathology during the disease.
Asunto(s)
Vacuna BCG/inmunología , Granuloma/veterinaria , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mycobacterium bovis/inmunología , Tuberculosis Bovina/enzimología , Animales , Vacuna BCG/farmacología , Bovinos , Granuloma/enzimología , Granuloma/inmunología , Granuloma/metabolismo , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/metabolismo , Tuberculosis Bovina/inmunología , Tuberculosis Bovina/metabolismoRESUMEN
The incidence of bovine tuberculosis (bTB) in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission.