Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 43(4): 611-629, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503935

RESUMEN

Infection with the necrotrophic fungus Diplodia sapinea (Fr.) Fuckel is among the economically and ecologically most devastating diseases of conifers in the northern hemisphere and is accelerated by global climate change. This study aims to characterize the changes mediated by D. sapinea infection on its pine host (Pinus sylvestris L.) that lead to the death of its needles. For this purpose, we performed an indoor infection experiment and inoculated shoot tips of pine seedlings with virulent D. sapinea. The consequences for foliar traits, including the phytohormone profile, were characterized at both the metabolite and transcriptome level. Our results showed that D. sapinea infection strongly affected foliar levels of most phytohormones and impaired a multitude of other metabolic and structural foliar traits, such as reactive oxygen species scavenging. Transcriptome analysis revealed that these changes are partially mediated via modified gene expression by fungal exposure. Diplodia sapinea appears to overcome the defense reactions of its pine host by reprogramming gene expression and post-transcriptional controls that determine essential foliar metabolic traits such as the phytohormone profile, cell wall composition and antioxidative system.


Asunto(s)
Pinus sylvestris , Pinus , Reguladores del Crecimiento de las Plantas , Enfermedades de las Plantas/microbiología , Pinus/genética , Pinus/microbiología
2.
Ecol Evol ; 9(4): 1858-1868, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847077

RESUMEN

The rapid conversion of Southeast Asian lowland rainforests into monocultures calls for the development of rapid methods for species identification to support ecological research and sustainable land-use management. Here, we investigated the utilization of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were successfully generated. The barcode effectiveness is assessed using four approaches: (a) comparison between morphological and molecular identification results, (b) best-close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of monophyletic groups. Results show that rbcL has a much higher level of sequence recoverability than matK (95% and 66%). The comparison between morphological and molecular identifications revealed that matK and rbcL worked best assigning a plant specimen to the genus level. Estimates of identification success using best-close match analysis showed that >70% of the investigated species were correctly identified when using single barcode. The use of two-loci barcodes was able to increase the identification success up to 80%. The barcoding gap analysis revealed that neither matK nor rbcL succeeded to create a clear gap between the intraspecific and interspecific divergences. However, these two barcodes were able to discriminate at least 70% of the species from each other. Fifteen genera and twenty-one species were found to be nonmonophyletic with both markers. The two-loci barcodes were sufficient to reconstruct evolutionary relationships among the plant taxa in the study area that are congruent with the broadly accepted APG III phylogeny.

3.
Front Plant Sci ; 9: 1753, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559755

RESUMEN

Root herbivory caused by larvae of the forest cockchafer (Melolontha hippocastani) enhances the impact of drought on trees, particularly in oak forest rejuvenations. In Germany, geographically distant oak stands show differences in infestation strength by the forest cockchafer. While in Southwestern Germany this insect causes severe damage, oak forests in northern Germany are rarely infested. It is known that root-released volatile organic compounds (VOCs) are perceived by soil herbivores, thus guiding the larvae toward the host roots. In this work, we exposed seedlings of two distant oak provenances to forest cockchafer larvae and studied their population genetic properties, their root-based VOC chemotypes, their attraction for larvae and terpene synthase gene expression. Based on nuclear and chloroplast marker analysis, we found both oak populations to be genetically highly variable while showing typical patterns of migration from different refugial regions. However, no clear association between genetic constitution of the different provenances and the abundance of cockchafer populations on site was observed. In contrast to observations in the field, bioassays revealed a preference of the larvae for the northeastern oak provenance. The behavior of larvae was most likely related to root-released volatile terpenes and benzenoids since their composition and quantity differed between oak populations. We assume repellent effects of these compounds because the populations attractive to insects showed low abundance of these compounds. Five different oak terpene synthase (TPS) genes were identified at the genomic level which can be responsible for biosynthesis of the released terpenes. TPS gene expression patterns in response to larval feeding revealed geographic variation rather than genotypic variation. Our results support the assumption that root-released VOC are influencing the perception of roots by herbivores.

4.
PLoS One ; 11(1): e0147633, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26807958

RESUMEN

Intensive transformation of lowland rainforest into oil palm and rubber monocultures is the most common land-use practice in Sumatra (Indonesia), accompanied by invasion of weeds. In the Jambi province, Centotheca lappacea is one of the most abundant alien grass species in plantations and in jungle rubber (an extensively used agroforest), but largely missing in natural rainforests. Here, we investigated putative genetic differentiation and signatures for adaptation in the introduced area. We studied reproductive mode and ploidy level as putative factors for invasiveness of the species. We sampled 19 populations in oil palm and rubber monocultures and in jungle rubber in two regions (Bukit Duabelas and Harapan). Amplified fragment length polymorphisms (AFLP) revealed a high diversity of individual genotypes and only a weak differentiation among populations (FST = 0.173) and between the two regions (FST = 0.065). There was no significant genetic differentiation between the three land-use systems. The metapopulation of C. lappacea consists of five genetic partitions with high levels of admixture; all partitions appeared in both regions, but with different proportions. Within the Bukit Duabelas region we observed significant isolation-by-distance. Nine AFLP loci (5.3% of all loci) were under natural diversifying selection. All studied populations of C. lappacea were diploid, outcrossing and self-incompatible, without any hints of apomixis. The estimated residence time of c. 100 years coincides with the onset of rubber and oil palm planting in Sumatra. In the colonization process, the species is already in a phase of establishment, which may be enhanced by efficient selection acting on a highly diverse gene pool. In the land-use systems, seed dispersal might be enhanced by adhesive spikelets. At present, the abundance of established populations in intensively managed land-use systems might provide opportunities for rapid dispersal of C. lappacea across rural landscapes in Sumatra, while the invasion potential in rainforest ecosystems appears to be moderate as long as they remain undisturbed.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Poaceae/genética , Clima Tropical , Genes de Plantas , Indonesia , Especies Introducidas , Poaceae/fisiología , Reproducción
5.
Front Plant Sci ; 5: 806, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25674097

RESUMEN

The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

6.
J Environ Radioact ; 106: 20-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22304996

RESUMEN

In the Chernobyl exclusion zone forest trees have to tolerate and to adapt to ionizing radiation, therefore the molecular basis of their adaptive responses is of the utmost interest. Based on SNP analysis and real time PCR nucleotide diversity and expression profiles of gene fragments of catalase (Cat) and glutathione peroxidase (GPx), which are known as radical scavenging genes, were analysed in the needles of irradiated pine trees of the Chernobyl exclusion zone. In acutely and chronically irradiated trees (50 years old) planted before the accident a higher nucleotide diversity of Cat and more somatic mutations were found compared to their control. Chronically irradiated trees (20 years old) planted after the accident showed a similar nucleotide diversity of Cat compared to their control and in both collectives one somatic mutation was found. The nucleotide diversity of GPx was higher in all analysed trees compared to Cat. No somatic mutation events were found in GPx. For both gene fragments, no association between the received dose in a tree and the nucleotide diversity and mutation events was detected. The expression profiles of Cat and GPx in acutely and chronically and in chronically irradiated trees were similar. Compared to their corresponding control collectives, Cat was up-regulated and GPx slightly down-regulated.


Asunto(s)
Accidente Nuclear de Chernóbil , Expresión Génica/efectos de la radiación , Nucleótidos/genética , Pinus sylvestris/genética , Radiación Ionizante , Catalasa/genética , Radioisótopos de Cesio/efectos adversos , Radioisótopos de Cesio/análisis , Glutatión Peroxidasa/genética , Mutación , Pinus sylvestris/química , Pinus sylvestris/efectos de la radiación , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Monitoreo de Radiación , Radioisótopos de Estroncio/efectos adversos , Radioisótopos de Estroncio/análisis , Tubulina (Proteína)/genética
7.
Mutat Res ; 725(1-2): 29-35, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21782970

RESUMEN

Ionizing radiation is a strong mutagenic factor and, accordingly, elevated mutation rates would be expected in plants exposed to high chronic or acute radiation after the Chernobyl accident in 1986. Somatic mutations were analyzed in pines (Pinus sylvestris L.) planted before and after the Chernobyl accident and in control material of the same origin planted in sites with natural radiation. Microsatellites (SSRs) and amplified fragment-length polymorphisms (AFLPs) were investigated. The mutation rates for microsatellites were estimated as 2.8 × 10(-4)-7.1 × 10(-4) per locus for different irradiated tree populations; no mutations were detected in the controls. In the case of AFLPs, the observed mutation rates were 3.74 × 10(-3) -3.99 × 10(-3) and 1.06 × 10(-3) per locus for contaminated and control areas, respectively. Thus a statistically highly significant three-fold increase in number of mutations was found by the use of AFLP markers, indicating that ionizing radiation causes strong DNA damage across the entire genome and that AFLPs may be the appropriate marker system for this kind of analysis.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Accidente Nuclear de Chernóbil , ADN de Plantas/efectos de la radiación , Repeticiones de Microsatélite , Mutación/efectos de la radiación , Pinus sylvestris/genética , Pinus sylvestris/efectos de la radiación
8.
PLoS One ; 5(6): e11034, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20543950

RESUMEN

BACKGROUND: There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size ( approximately 23.8 Gb/C). METHODOLOGY/PRINCIPAL FINDINGS: A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). CONCLUSIONS/SIGNIFICANCE: This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.


Asunto(s)
Pinus/genética , Polimorfismo de Nucleótido Simple , Etiquetas de Secuencia Expresada , Frecuencia de los Genes , Genes de Plantas , Técnicas In Vitro , Reproducibilidad de los Resultados
9.
Physiol Plant ; 137(4): 509-19, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19627554

RESUMEN

With the increasing availability of sequence information at putatively important genes or regulatory regions, the characterization of adaptive genetic diversity and their association with phenotypic trait variation becomes feasible for many non-model organisms such as forest trees. Especially in predominantly outcrossing forest tree populations with large effective size, a high genetic variation in relevant genes is maintained, that is the raw material for the adaptation to changing and variable environments, and likewise for plant breeding. Oaks (Quercus spp.) are excellent model species to study the adaptation of forest trees to changing environments. They show a wide geographic distribution in Europe as dominant tree species in many forests and grow under a wide range of climatic and edaphic conditions. With the availability of a growing amount of functional and expressional candidate genes, we are now able to test the functional importance of single nucleotide polymorphisms (SNPs) by associating nucleotide variation in these genes with phenotypic variation in adaptive traits in segregating or natural populations. Here, we report on quantitative trait locus (QTL), candidate gene and association mapping approaches that are applicable to characterize gene markers and SNPs associated with variation in adaptive traits, such as bud burst, drought resistance and other traits showing selective responses to environmental change and stress. Because genome-wide association mapping studies are not feasible because of the enormous amount of SNP markers required in outcrossing trees with high recombination rates, the success of such an approach depends largely on the reasonable selection of candidate genes.


Asunto(s)
Adaptación Fisiológica/genética , Variación Genética , Genoma de Planta/genética , Genómica/métodos , Modelos Genéticos , Árboles/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...