Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Epigenetics Chromatin ; 17(1): 17, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773468

RESUMEN

BACKGROUND: Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS: In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS: This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.


Asunto(s)
Cromatina , Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cromatina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Sitio de Iniciación de la Transcripción , Proteínas del Grupo Polycomb/metabolismo , Drosophila/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511602

RESUMEN

Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.


Asunto(s)
Proteínas de Drosophila , Receptores de Esteroides , Animales , Drosophila/genética , Drosophila/metabolismo , Ecdisona , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisterona/farmacología , Ecdisterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Activación Transcripcional , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo
3.
Cancers (Basel) ; 15(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297004

RESUMEN

The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.

4.
Nucleic Acids Res ; 51(12): 6087-6100, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37140047

RESUMEN

The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Factores de Transcripción , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142573

RESUMEN

According to previous studies, during Drosophila embryogenesis, the recruitment of RNA polymerase II precedes active gene transcription. This work is aimed at exploring whether this mechanism is used during Drosophila metamorphosis. In addition, the composition of the RNA polymerase II "paused" complexes associated with promoters at different developmental stages are described in detail. For this purpose, we performed ChIP-Seq analysis using antibodies for various modifications of RNA polymerase II (total, Pol II CTD Ser5P, and Pol II CTD Ser2P) as well as for subunits of the NELF, DSIF, and PAF complexes and Brd4/Fs(1)h that control transcription elongation. We found that during metamorphosis, similar to mid-embryogenesis, the promoters were bound by RNA polymerase II in the "paused" state, preparing for activation at later stages of development. During mid-embryogenesis, RNA polymerase II in a "pause" state was phosphorylated at Ser5 and Ser2 of Pol II CTD and bound the NELF, DSIF, and PAF complexes, but not Brd4/Fs(1)h. During metamorphosis, the "paused" RNA polymerase II complex included Brd4/Fs(1)h in addition to NELF, DSIF, and PAF. The RNA polymerase II in this complex was phosphorylated at Ser5 of Pol II CTD, but not at Ser2. These results indicate that, during mid-embryogenesis, RNA polymerase II stalls in the "post-pause" state, being phosphorylated at Ser2 of Pol II CTD (after the stage of p-TEFb action). During metamorphosis, the "pause" mechanism is closer to classical promoter-proximal pausing and is characterized by a low level of Pol II CTD Ser2P.


Asunto(s)
Proteínas de Drosophila , ARN Polimerasa II , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
6.
Cell Mol Life Sci ; 79(7): 353, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35676368

RESUMEN

The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas Argonautas/genética , Cromatina/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Elementos de Respuesta
7.
Sci Rep ; 11(1): 16963, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417521

RESUMEN

Suppressor of Hairy wing [Su(Hw)] is an insulator protein that participates in regulating chromatin architecture and gene repression in Drosophila. In previous studies we have shown that Su(Hw) is also required for pre-replication complex (pre-RC) recruitment on Su(Hw)-bound sites (SBSs) in Drosophila S2 cells and pupa. Here, we describe the effect of Su(Hw) on developmentally regulated amplification of 66D and 7F Drosophila amplicons in follicle cells (DAFCs), widely used as models in replication studies. We show Su(Hw) binding co-localizes with all known DAFCs in Drosophila ovaries, whereas disruption of Su(Hw) binding to 66D and 7F DAFCs causes a two-fold decrease in the amplification of these loci. The complete loss of Su(Hw) binding to chromatin impairs pre-RC recruitment to all amplification regulatory regions of 66D and 7F loci at early oogenesis (prior to DAFCs amplification). These changes coincide with a considerable Su(Hw)-dependent condensation of chromatin at 66D and 7F loci. Although we observed the Brm, ISWI, Mi-2, and CHD1 chromatin remodelers at SBSs genome wide, their remodeler activity does not appear to be responsible for chromatin decondensation at the 66D and 7F amplification regulatory regions. We have discovered that, in addition to the CBP/Nejire and Chameau histone acetyltransferases, the Gcn5 acetyltransferase binds to 66D and 7F DAFCs at SBSs and this binding is dependent on Su(Hw). We propose that the main function of Su(Hw) in developmental amplification of 66D and 7F DAFCs is to establish a chromatin structure that is permissive to pre-RC recruitment.


Asunto(s)
Corion/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Amplificación de Genes , Sitios Genéticos , Proteínas Represoras/genética , Animales , Ensamble y Desensamble de Cromatina/genética , Análisis por Conglomerados , Replicación del ADN/genética , Proteínas de Drosophila/metabolismo , Femenino , Modelos Biológicos , Mutación/genética , Nucleosomas/metabolismo , Oogénesis/genética , Folículo Ovárico/metabolismo , Unión Proteica
8.
BMC Biol ; 19(1): 113, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078365

RESUMEN

BACKGROUND: Epigenetic memory plays a critical role in the establishment and maintenance of cell identities in multicellular organisms. Polycomb and trithorax group (PcG and TrxG) proteins are responsible for epigenetic memory, and in flies, they are recruited to specialized DNA regulatory elements termed polycomb response elements (PREs). Previous transgene studies have shown that PREs can silence reporter genes outside of their normal context, often by pairing sensitive (PSS) mechanism; however, their silencing activity is non-autonomous and depends upon the surrounding chromatin context. It is not known why PRE activity depends on the local environment or what outside factors can induce silencing. RESULTS: Using an attP system in Drosophila, we find that the so-called neutral chromatin environments vary substantially in their ability to support the silencing activity of the well-characterized bxdPRE. In refractory chromosomal contexts, factors required for PcG-silencing are unable to gain access to the PRE. Silencing activity can be rescued by linking the bxdPRE to a boundary element (insulator). When placed next to the PRE, the boundaries induce an alteration in chromatin structure enabling factors critical for PcG silencing to gain access to the bxdPRE. When placed at a distance from the bxdPRE, boundaries induce PSS by bringing the bxdPREs on each homolog in close proximity. CONCLUSION: This proof-of-concept study demonstrates that the repressing activity of PREs can be induced or enhanced by nearby boundary elements.


Asunto(s)
Elementos de Respuesta , Animales , Cromatina/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complejo Represivo Polycomb 1 , Elementos de Respuesta/genética
9.
Sci Rep ; 11(1): 172, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420323

RESUMEN

For many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Ecdisona/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Núcleo Celular/metabolismo , Drosophila/citología
10.
Sci Rep ; 10(1): 4793, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179799

RESUMEN

Proximity-dependent biotin labelling revealed undescribed participants of the ecdysone response in Drosophila. Two labelling enzymes (BioID2 and APEX2) were fused to EcR or Usp to biotin label the surrounding proteins. The EcR/Usp heterodimer was found to collaborate with nuclear pore subunits, chromatin remodelers, and architectural proteins. Many proteins identified through proximity-dependent labelling with EcR/Usp were described previously as functional components of an ecdysone response, corroborating the potency of this labelling method. A link to ecdysone response was confirmed for some newly discovered regulators by immunoprecipitation of prepupal nuclear extract with anti-EcR antibodies and functional experiments in Drosophila S2 cells. A more in-depth study was conducted to clarify the association of EcR/Usp with one of the detected proteins, CP190, a well-described cofactor of Drosophila insulators. CP190 was found to co-immunoprecipitate with the EcR subunit of EcR/Usp in a 20E-independent manner. ChIP-Seq experiments revealed only partial overlapping between CP190 and EcR bound sites in the Drosophila genome and complete absence of CP190 binding at 20E-dependent enhancers. Analysis of Hi-C data demonstrated an existence of remote interactions between 20E-dependent enhancers and CP190 sites which suggests formation of a protein complex between EcR/Usp and CP190 through the space. Our results support the previous concept that CP190 has a role in stabilization of specific chromatin loops for proper activation of transcription of genes regulated by 20E hormone.


Asunto(s)
Biotina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Ecdisona/metabolismo , Ecdisterona/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Animales , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/fisiología , Genoma de los Insectos/genética , Inmunoprecipitación , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Nucleares/fisiología , Unión Proteica/genética , Transcripción Genética
11.
Insect Biochem Mol Biol ; 112: 103184, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31295549

RESUMEN

The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Esteroides/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisterona/farmacología , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/genética , Receptores de Esteroides/genética
12.
Stem Cells ; 37(8): 1018-1029, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31021473

RESUMEN

The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.


Asunto(s)
Proliferación Celular , Cromatina/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Supervivencia Celular , Cromatina/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ratones , Factores de Transcripción/genética
13.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 178-189, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29410380

RESUMEN

Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.


Asunto(s)
Drosophila melanogaster/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Activación Transcripcional/genética , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Ecdisona/farmacología , Modelos Genéticos , Unión Proteica , Interferencia de ARN , ARN Polimerasa II/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
14.
Cell Biosci ; 6: 15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913181

RESUMEN

Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators.

15.
Cell Cycle ; 14(22): 3593-601, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26506480

RESUMEN

The DHR3 and Hr4 early-late genes of the ecdysone cascade are described as models for transcriptional studies in Drosophila cells. In a set of experiments, it became clear that these genes are a convenient and versatile system for research into the physiological conditions upon 20-hydroxyecdysone induction. DHR3 and Hr4 gene transcription is characterized by fast activation kinetics, which enables transcriptional studies without the influence of indirect effects. A limited number of activated genes (only 73 genes are induced one hour after treatment) promote the selectivity of transcriptional studies via 20-hydroxyecdysone induction. DHR3 and Hr4 gene expression is dose dependent, is completely controlled by the hormone titer and decreases within hours of 20-hydroxyecdysone withdrawal. The DHR3 and Hr4 gene promoters become functional within 20 minutes after induction, which makes them useful tools for investigation if the early activation process. Their transcription is controlled by the RNA polymerase II pausing mechanism, which is widespread in the genome of Drosophila melanogaster but is still underinvestigated. Uniform expression activation of the DHR3 and Hr4 genes in a cell population was confirmed at both the RNA and protein levels. Homogeneity of the transcription response makes DHR3/Hr4 system valuable for investigation of the protein dynamics during transcription induction.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Genética , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisterona/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
16.
J Neurol Sci ; 340(1-2): 198-207, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24768159

RESUMEN

Progressive degeneration of nigrostriatal dopaminergic (DA-ergic) neurons is a key component in the pathogenesis of Parkinson's disease, which develops for a long time at the preclinical stage with no motor dysfunctions due to the initiation of compensatory processes. The goal of this study was to evaluate the changes in surviving nigrostriatal DA-ergic neurons with focus on tyrosine hydroxylase (TH) in MPTP-treated mice at the presymptomatic and early symptomatic stages of parkinsonism. According to our data, a partial degeneration of DA-ergic neurons at the presymptomatic stage was accompanied by: (i) no change in TH mRNA content in the substantia nigra (SN) suggesting a compensatory increase of TH gene expression in individual neurons; (ii) a decrease of TH protein content in the nigrostriatal system and no change in individual neurons, suggesting a slowdown of TH translation. When comparing DA-ergic neurons at the early symptomatic stage and presymptomatic stage, it becomes evident: (i) a decrease of TH mRNA content in the SN and hence gene expression in individual neurons; (ii) a decrease of TH content in the striatum and its increase in the SN and individual neurons suggesting an acceleration of TH translation. TH activity, an index of the rate of DA synthesis, was unchanged in the SN and decreased in the striatum to the same degree at both stages of parkinsonism. In the meantime, TH activity in individual neurons appeared to be compensatory increased, but to a higher degree at the symptomatic stage than at the presymptomatic one. These data first show that DA depletion, which provokes motor dysfunction, is not a result of the decrease of TH activity and the rate of DA synthesis but is rather related to either a decrease of DA release or an increase of DA uptake in striatal DA-ergic axons.


Asunto(s)
Cuerpo Estriado/patología , Neuronas Dopaminérgicas/fisiología , Intoxicación por MPTP/patología , Intoxicación por MPTP/fisiopatología , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Inhibidores de Descarboxilasas de Aminoácidos Aromáticos/farmacología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Electroquímica , Regulación de la Expresión Génica/efectos de los fármacos , Hidrazinas/farmacología , Levodopa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , ARN Mensajero/metabolismo , Tirosina 3-Monooxigenasa/genética
17.
Mol Biol Cell ; 24(20): 3205-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23985322

RESUMEN

The microtubule- and centrosome-associated Ste20-like kinase (SLK; long Ste20-like kinase [LOSK]) regulates cytoskeleton organization and cell polarization and spreading. Its inhibition causes microtubule disorganization and release of centrosomal dynactin. The major function of dynactin is minus end-directed transport along microtubules in a complex with dynein motor. In addition, dynactin is required for maintenance of the microtubule radial array in interphase cells, and depletion of its centrosomal pool entails microtubule disorganization. Here we demonstrate that SLK (LOSK) phosphorylates the p150(Glued) subunit of dynactin and thus targets it to the centrosome, where it maintains microtubule radial organization. We show that phosphorylation is required only for centrosomal localization of p150(Glued) and does not affect its microtubule-organizing properties: artificial targeting of nonphosphorylatable p150(Glued) to the centrosome restores microtubule radial array in cells with inhibited SLK (LOSK). The phosphorylation site is located in a microtubule-binding region that is variable for two isoforms (1A and 1B) of p150(Glued) expressed in cultured fibroblast-like cells (isoform 1B lacks 20 amino acids in the basic microtubule-binding domain). The fact that SLK (LOSK) phosphorylates only a minor isoform 1A of p150(Glued) suggests that transport and microtubule-organizing functions of dynactin are distinctly divided between the two isoforms. We also show that dynactin phosphorylation is involved in Golgi reorientation in polarized cells.


Asunto(s)
Centrosoma/metabolismo , Citoesqueleto/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Polaridad Celular/genética , Centrosoma/ultraestructura , Chlorocebus aethiops , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Complejo Dinactina , Dineínas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Aparato de Golgi/ultraestructura , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Fosforilación , Isoformas de Proteínas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Vero
18.
Nucleic Acids Res ; 41(11): 5717-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609538

RESUMEN

Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Histona Acetiltransferasas/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión , Línea Celular , Ensamble y Desensamble de Cromatina , Drosophila/enzimología , Drosophila/metabolismo , Genoma de los Insectos , Proteínas del Grupo de Alta Movilidad/metabolismo , Elementos Aisladores , Nucleosomas/metabolismo
19.
Nucleic Acids Res ; 40(15): 7319-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22638575

RESUMEN

Drosophila SAYP, a homologue of human PHF10/BAF45a, is a metazoan coactivator associated with Brahma and essential for its recruitment on the promoter. The role of SAYP in DHR3 activator-driven transcription of the ftz-f1 gene, a member of the ecdysone cascade was studied. In the repressed state of ftz-f1 in the presence of DHR3, the Pol II complex is pre-recruited on the promoter; Pol II starts transcription but is paused 1.5 kb downstream of the promoter, with SAYP and Brahma forming a 'nucleosomal barrier' (a region of high nucleosome density) ahead of paused Pol II. SAYP depletion leads to the removal of Brahma, thereby eliminating the nucleosomal barrier. During active transcription, Pol II pausing at the same point correlates with Pol II CTD Ser2 phosphorylation. SAYP is essential for Ser2 phosphorylation and transcription elongation. Thus, SAYP as part of the Brahma complex participates in both 'repressive' and 'transient' Pol II pausing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Línea Celular , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Serina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Sitio de Iniciación de la Transcripción
20.
Nucleic Acids Res ; 40(6): 2445-53, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22123744

RESUMEN

Jak/STAT is an important signaling pathway mediating multiple events in development. We describe participation of metazoan co-activator SAYP/PHF10 in this pathway downstream of STAT. The latter, via its activation domain, interacts with the conserved core of SAYP. STAT is associated with the SAYP-containing co-activator complex BTFly and recruits BTFly onto genes. SAYP is necessary for stimulating STAT-driven transcription of numerous genes. Mutation of SAYP leads to maldevelopments similar to those observed in STAT mutants. Thus, SAYP is a novel co-activator mediating the action of STAT.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción STAT/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Línea Celular , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Mutación , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción STAT/química , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA